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Abstract

Recursive-descent parsers can not handle left recursimhseveral solutions to this problem
have been suggested. This paper presents yet anotheproldthe idea is to modify recursive-
descent parser so that it reconstructs left-recursiveqmsof syntax tree bottom-up, by "recursive
ascent”.

1 Introduction

Recursive-descent parser is a collection of "parsing phoes” that call each other recursively, mim-
icking the derivation process. This simple scheme cannetpipéied if the grammar is left-recursive: a
parsing procedure may indefinitely call itself, every tinageihg the same input. Some solutions have
been suggested, and they are outlined in Section 9 at theWadoresent here yet another approach.
We view parsing as the process of reconstructing the syngaxdf given string. For this purpose, we
equip parsing procedures with "semantic actions” thatieitjyl produce that tree. Recursive descent re-
constructs syntax tree starting from the top. We suggestdonstruct left-recursive portions of the tree
bottom-up, by a process that we call "recursive ascent’s Thalso done by procedures that call each
other recursively and have their own semantic actions. § pescedures can be regarded as new parsing
procedures. We incorporate them into the recursive-dégzaser, and the result is recursive-descent
parser for a new grammar, referred to as the "dual grammalné dual grammar is not left-recursive,
and its parser produces syntax tree for the original grammar

In Section 2 we recall the necessary notions: BNF grammaivadion, and syntax tree. In Sec-
tion 3 we recall the idea of recursive-descent parser amddate "semantic actions” that reconstruct
the syntax tree. After introducing the necessary concepeiction 4, we introduce in Section 5 the
idea of recursive ascent together with procedures to pariorThey are illustrated by two examples in
section 6. In Section 7 we point out that the procedures pfsteld are parsing procedures for dual gram-
mar. Two Propositions state the essential properties oftianmar. Section 8 looks at implementation
of choice expressions, Section 9 outlines other known isolsit Some unsolved problems are discussed
in Section 10. Proofs of the Propositions are given in theekulix.

2 The grammar

We consider a BNF-like gramm&f = (N, X, E, £, N,) with setN of non-terminals set¥ of terminals
setE of expressionsfunction& from non-terminals to expressions, and gtart symbolV, € N.
An expression is one of these:

— a € ¥ ("terminal”),

— N € N ("non-terminal”),

—e1...¢e, ("sequence”),

— e1]...]e, ("choice”),



where each of; is an expression. The functighis defined by a set of rules of the forivi — ¢, where
e is the expression assigned Byto non-terminalN. We often write N — e to meane = £(N). In
the following, expressiong € Y. and N € N will be viewed as special cases of choice expression with
n = 1. We do not include empty strirgamong expressions. The problems caused by it and suggested
solutions are discussed in Section 10.

Non-terminalN — e ... e, derivesthe stringe; ...e, of symbols, whileN — ¢4]...|e, derives
one ofeq,...,e,. The derivation is repeated to obtain a string of terminalss process is represented
by syntax tree. The set of all strings derived fré¥ne N is called thelanguageof N and is denoted
by £(NV). Figures 1 and 2 are examples of gramm@ashowing syntax trees of strings derived from the
start symbol.
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Figure 1: Example of grammar G and syntax tree of ’xabbay’
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Figure 2: Example of grammar G and syntax tree of ’a*b+axb’

3 Recursive descent

The idea of recursive-descent parsing is that each terraiméhleach non-terminal is assignegasing
procedure The procedure eithezonsumessome prefix of given input, or fails and leaves the input
unchanged. Thus:

— Procedure for terminal consumes: if the input begins withz. Otherwise it fails.

— Procedure foiV — e ... e, calls the procedures,, ..., e,, in this order, and fails if any of them
fails.

— Procedure folN — ey]...|e, somehow selects and calls one of the proceduyes. ., e, that
succeds on the input. It fails if none of them can succeed.e (¥ay of making this selection is
discussed in Section 8.)



An important property of this metod of parsing is close canio® between the grammar and the parsing
procedures. Namely, grammar rul¥s— e; ...e, andN — e4]... |e, may be alternatively regarded as
concise representations of parsing procedures, Witheing the procedure’s name aadrepresenting a
call to procedure;. The pattern of successful calls to parsing procedures gsithe derivation process,
so successful call to proceduré consumes a prefix belonging (). The informationhow the
consumed string was derived is recorded in some unspecitgd w

We begin our construction by making this recording expligitd suggest that each successful parsing
procedure returns syntax tree of the string it consumed tht®ipurpose, we add to each procedure its
semantic actiorto be executed after successful parsing. It is shown bel@osed in braces$}:

N —eq...e, {return [N<eq]... [e,]]} (1)
N — eq|...|e, {return [N<le]]} (2)
We denote here byt] a syntax tree with top node and write[t<i[t{]. .. [t,]] to indicate thatt has
subtreest,], ..., [t,] as children.
Each successfully called proceduseeturns its syntax trefe;|. If e; is for terminala, it returns syntax
tree[a] of height 0. Procedure (1) returns tree with top nddéaving as children the tregs|, .. ., [e,]

returned by called procedures. Procedure (2) returns titbeap nodeN having as single child the tree
[e;] returned by the selected procedure.

Parsing starts with invoking (1) or (2) for the start symhbbtesults in recursive calls to subprocedures
that eventually return syntax trees for the substrings tdosgume. At the end, procedukg builds and
returns the final result.

Assuming that (2) makes its choice based only on input ahbéslidoes not work if the grammar
contains left recursion. This is the case for both our examplf A choosesi1, andB choose$1, they
are called again without any input being consumed in betwaed thus bound to indefinitely make the
same choices, never returning any result. The situatioimi¢as for E andF.

4 Some definitions

We need some definitions before suggesting how to handleclaftsion.

For N € Nande € NU ¥, defineN frst ¢ to mean that parsing procedure fsrmay call that fore

on the same input. We have thus:
first

—IfN —=e...ep, N— e€7.
first .
—IfN—>61|...|en,N£>el-f0r1Szgn.

Let ™™ pe the transitive closure of>. Non-terminalN € N is (left) recursiveif N Arst N, The

set of all recursive non-terminals 6f is denoted byR. All non-terminals in Figure 1 excef@ and all
non-terminals in Figure 2 are recursive.
First First

Define relation between recursivé;, N, € R that holds ifN; — N, — N;j. This is an equiva-
lence relation that partitionR into equivalence classes. We call themgursion classesThe recursion
class of N is denoted byC(N). All non-terminals in Figure 1 belong to the same class; taengnar of

Figure 2 has two recursion class€g,E1} and{F,F1}.

In syntax tree, the leftmost path emanating from any nodedbain of nodes connected Bc'yﬂ

SupposeN; and N, belonging to the same recursion cl&@sappear on the same leftmost path. Any

non-terminalN between them must also belong@p which follows from the fact thaiv; First py First

No First Ni. It means that members @fappearing on the same leftmost path must form an uninterupt

sequence. We call such sequenceaursion pathof classC. The only recursion path in Figure 1 is the



whole leftmost path from the firgt without finala. The syntax tree in Figure 2 has two recursion paths,
one starting witle and another withr.

Let N — e;...e, be on arecursion path. The next item on the leftmost path iand it must belong

to C(N) to ensureN st N. It follows that the last item on a recursion path must\oe— eq]...|e,

where at least one @f is not a member of (N). SuchN is called arexit of C(V), and its alternatives
outsideC(N) are theseedf C(V). In Figure 1, bothh andB are exits, and the seeds arandb. In
Figure 2,E andF are exits of their respective classes, and the correspgrisgieds arg anda.

A non-terminal that can be the start of a recursion path iedanentry of its recursion class. It is
one of these:

— An expression ir£ (N) of non-recursiveV.

— One of expressions,, . . ., e, of recursiveN — e, ... e,.

— A seed of another recursion class.

— The start symbol.
The recursion class in Figure 1 hass its entry. The recursion classes in Figure 2 leagadF as their
respective entries.

5 Recursive ascent

To handle left recursion, we suggest that parsing proceduentry £/ does not follow the pattern given
by (1) and (2) above. It still returns syntax trigg], but builds this tree in a different way.

As noted in the preceding sectiof;] has recursion path starting with the entry nddend ending
with the exit node followed by a seed. We start with the seetamtend the recursion path, adding one
node at a time. We reconstruct the side branches when the addie represents sequence expression.
The tree being constructed is local to the invocation of edoceE. We call it "the plant”, and denote it

by [r].
Sowing the seed

Borrowing the way we used to represent parsing proceduresutline the new entry procedure as:
E — S {sow [S]} growS {return [r]} . (3)

Here, S represents call to parsing procedure for the sgetf successful, it returns syntax trég|, and
semantic actiogow [S] initializes [7] with that tree. This is followed by call to new procedigeowsS,
that continues parsing and grows the plant towafds If it succeeds, the final semantic action returns
the reconstructed tree. The whole procedure fais éf grow.S does.

In general, the recursion claB$ E') may have more than one seed /$bas to choose one that matches
the input. To represent this choice, we borrow the syntavhofae expression:

E — S {sow [S1]} growS; {return [7]} | ... | S, {sow [S,]} growS,, {return [7]}, (4)
whereSy, ..., S, are all seeds df(F).

Growing the plant

The plant is grown by recursive procedures, each adding ode and then calling another procedure to
continue growing. This can be sketched as follows:

growR — addP growP. (5)



It applies to plant with topgR; adds nodeP, and continues to grow the plant that has nBwn top. The

added node” is a predecessor @t in the recursion path, meaning st R. In general,R may have

several predecessof3satisfying P first, R, sogrowR must choose one of them that matches the input.

Again, we represent this in the way we used for choice exmess

growR — addP; growP; | ... | addP, growpP, (6)
whereP, ..., P, are all members of (E) such that?; ™% R. We simplify this by introducing new
procedure

$P — addP growP, (7)

so that (6) becomes:
growR — $P | ... | $P,. (8)

The growing may stop when the plant reacliesThat means, (8) foff must have one more alternative,
"do nothing”, which we represent ky

growE — 3P, | ... | $P, | e. 9)

Adding a node
OperationaddP is illustrated in Figure 3. It adds nodeto plant[R].

P—>R62...e P —e|...|R|...|en
A — AATA /\
[7] add [P<[n][e2] . .. [en]] add [P<[n]]

Figure 3: addP

If P — eres...e,, the added nod® will have the present plant as the first child. The other chitd
are obtained by callings, . . . , e,,. Operationadd [P<[r][ez] ... [e,]] Shown in the Figure adds node

with these children to the plant.

If P — eq]...|en, the added nod® has only one child, namely the present plant. Operatian[P<|r]]

shown in the Figure adds such noBéo the plant.

Inserting these operations in (7), we obtain:

$P — ea...e, {add [P<(n][e2] ... [en]]} growP if P —e1...ep, (10)
$P — {add [P<[n]]} growP if P—eil...|en. (11)

Multiple entries

The above assumed that each recursion class has only opeTgigis not true for many grammars; for
example, the class of Primary in Java has four entries.

Multiple entries can be handled because calls to entry gioes are nested, so one can keep track of
which one is currently active. The exit alternativén grow . must be applied only iF is the currently
active one.



6

Examples

Example 1

Applying (1), (4), (8-9), (10-11) to the grammar of Figurerdplacing calls for grow” by their defi-
nitions, and omitting unused procedures, we obtain theguhares shown in Figure 4. We apply them
to string > xabbay’, showing how they construct the syntax tree appearing irfFtbere. Numbers on
the left indicate top of the plant after each step. The promsifor choice expressions are assumed to
always make correct choice using some oracle; this will beldised later in Section 8.
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(10) Z
P
9) x A Y
Z — x Ay {return [Z<[x][A][yl]} (8) A|1
A — a {sow [al} $A {return [n]} N
| b {sow [bl} $B {return [x]} (7) B a
$A — {add [A<[r]]1} ($B1 | ) (©) i
$B — {add [B<lr1l} ($A1 | $B2) PN
$A1— a {add [A1<[7][all} $A () B b
$B1— b {add [B1<i[x]1[b]]1} $B @) b1
$B2— b {add [B2<i[7r]1[bl]l} $B /N
3) A b
@) a

Figure 4: Procedures and example of parsing for grammar of Figure 1.

. The parsing starts with procedure for non-recurgikat, in the usual way, calls the proceduzgs

A, andy. After consuming’x’, Z appliesA to ’ abbay’.

. Procedure. chooses its first alternative, appliego ’abbay’, leaving *bbay’, and initializes f]

with [a]. Then it calls$A.

. ProcedurgA adds node on top of ]. Then it chooses to ca$iB1.
. Procedur&B1 appliesb to *bbay’, leaving’bay’, and creates nodel with children [A] and [o].

Then it calls$B.

. Procedur&B adds nod® on top of B1]. Then it chooses to ca$iB2.
. Procedure$B2 appliesb to ’bay’, leaving ’ay’, and creates nodg2 with children B] and [b].

Then it calls$B.

. ProcedurgB adds node on top of B2]. Then it chooses to cafiA1.
. ProcedureA1 appliesa to >ay’, leaving’y’, and creates nodet with children B] and [a]. Then

it calls $A.

. ProcedureéA adds node on top of [A1]. Then it chooses, and returns, causing the invokéd1 ,

$B, $B2, $B, $B1, $Atoterminate one after another. Finally, it returaftp Z.
. Procedur& consumes the remainirg;’ and returns the trefz<i[x] [A] [y]].



Example 2

For example of Figure 2, we obtain the procedures shown mreig. We apply them to strintpxb+ax*b’,
showing how they construct the syntax tree appearing in ther& Numbers indicate top of the plant
after each step.

(0]

10.
11.

12.

13.
14.

15.
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(15) E

E — F {sow [F]} $E {return [n]} (14) E|1

$E — {add [E<[x]]} ($E1 | &) — 1T

$E1— + F {add [E1<[n][+][F]1]} $E @) |E ' }|7 12)
(5,6) F F1 (11)

F — a {sow [al} $F {return [n]} (4) F|1 F/l\b (10)

$F — {add [F<[7]l} ($F1 | &) AR

$F1— * b {add [F1<[x][*]1[bl]1} $F (3) ll? * b a (9)
(2) a

Figure 5: Procedures and example of parsing for grammar of Figure 2.

. Procedure calls parsing procedure for its seed
. Proceduré calls parsing procedure for its segdwhich consumesga’, leaving’ *b+ax*b’.

Then it initializes its plant withla] and calls$F.

. Procedur&F addsF on top of [a] and chooses to cadF1.
. ProceduregF1 calls procedures andb that consume *b’, leaving’+a*b’.

Then it adds[F1<1[F] [*] [b]] on top of [F] and calls$F.

. Procedur&F addsF on top of [F1] and chooses, causing the invokedF1 to terminate.

Then it returns to procedui®

. Proceduré& returns tckE the syntax tredF] of *axb’.

Proceduret initializes its plant with[F]. What has been the plant Bfbecomes now the seed Bf
Procedure calls thengE.

. Procedur&E addsE on top of [F] and decides to caflE1.
. ProcedurgE1 calls procedures andF. The first consumes+’, leaving’ a*b’.
. Proceduré calls parsing procedure for its seedwhich consumesga’, leaving’ *b’. It initializes

its own plant with[a]. We have now two plants: that of proceduefor the moment left waiting,
and the new plant af. Procedurer calls $F.

Procedur@F addsF on top of [a]. Then it chooses to ca$iF1.

Procedur@F1 calls procedures andb that consume the remainingb’.

Then it adds[F1<1[F] [*] [b]] on top of [F] and calls$F.

Procedur@F addsF on top of [F1] and chooses, causing the invokedF1 to terminate.

Then it returns to proceduie

Proceduré returns tcE the syntax tredF] of >axb’.

Procedur@¢E1 addsE1<[E] [+] [F1] on top of [E]. The plant off becomes now a branch of the
plant ofE. The procedure calls the$E.

ProcedurdE addsE on top of$E1 and chooses, causing the invoke@E1 to terminate. Then it
returns to procedure.

. Procedur& terminates, returning the constructed t{&a.



7 The dual grammar

Consider now the procedures from in Figure 4 with their sdinattions made invisible:

Z — xAy

A — a$A | b $B
$A — $B1 | ¢

$B — $A1 | $B2
$A1— a $A

$B1— b $B

$B2— b $B

This is a new grammar with the sgZ,A,$A,$B,$A1,$B1,$B2} of non-terminals. Reversing what was
said at the beginning of Section 3, we discover that proaim Figure 4 are parsing procedures for
this grammar. It means that our parsing with recursive dssectually performed as recursive descent
for a new grammar. This new grammar is in the following refdrto asdual grammarfor the grammar

of Figure 1. The procedures differ from (1-2) by having spkesemantic actions to construct syntax tree
according to the original grammar. The dual grammar for gnamof Figure 2 is:

E — F $E
$E — $E1 | ¢
$E1— + F $E
F — a $F
$F — $F1 | ¢
$F1— * a $F

One can see that dual grammar is in general constructedlasgol

— For each entry¥ create rulel! — Sy growS; | ... | S, growsS,,
— Replace each recursivé — ejes ... e, by $R — €5 ... e, growR,
— Replace each recursive — ey | ... | e, by$R — growR,
— ReplacegrowR by $P; | ... | $P, if R # E,
— ReplacegrowE by $P; | ... | $P, | €,

where

- S1,...,S5, are all seeds of (E),
— Py,..., P, are all members of (F) such thatP; first p.

The dual grammar is an n-tuple = (Np, ¥, Ep, Ep, Ny). Its setNp consists of:

— The non-recursive members Nf

— The entries to recursion classes;

— The new non-terminals with $-names.
In the following, the set of all non-recursive membersNofs denoted byR, and the set of all entries
by Rr. They appear as non-terminals in bathand D. The setR U Ry of these common symbols
is denoted byN-. The languagelp(N) of N € Np is the set of all terminal strings derived frovi
according to the rules ab.



The two important facts about the dual grammar are:

Proposition 1. The dual grammar is left-recursive only if the original grammar contains a
cycle, that is, a non-terminal that derives itself.

Proof is found in the Appendix.
Proposition 2. Lp(N) = L(N) for all N € N¢.

Proof is found in the Appendix.

8 Implementing the choices

One can see that the choices (4) and (8-9) became standaed ekpressions in the dual grammar. The
dual grammar contains also choice expressions inherited fhe original grammar. So far, we did not
say anything about the way procedures for these expressmdedwhich alternative to choose.

A safe way is to systematically check all choices, backiraglafter each failure, until we find the
correct one (or find that there is none). This, however, takpsnential time.

There exist shortcuts that give reasonable processing Timeproblem is that each is applicable only
to a restricted class of grammars [fis outside this class, the parser will reject some strings©fN).

One shortcut is to look at the next input terminal. This igMasst, and involves no backtracking, but
requires that strings derived from different alternatibbegin with different terminals. This is known as
the LL(1) property. (As a matter of fact, both dual grammarstir examples have this property.)

Another shortcut, not much investigated, is to look at ingithin the reach of one parsing procedure.
It requires that some procedures eventually called froferiht alternatives never succeed on the same
input. This property of the grammar is suggested to be call€dip) [8].

Yet another one is limited backtracking, called "fast-Baick[5], page 57, and recently exploited in
Parsing Expression Grammar [3]. Here the choice expresgemdifferent alternatives and accepts the
first successful one. Backtracking is limited to sequeng@essions. Using the technique of "packrat
parsing” [2], one can make it work in linear time.

Limited backtracking requires that all choices after fitgtessful one must lead to failure. We say that
grammar having this property is fast-back safe. A sufficoamtdition for fast-back safety is given in [9].
(Note that this property depends on the order of alternaifivehoice expressions.)

Proposition 2 implies that if grammdp is safe for the chosen method (LL(1), LL(1p), respectively
fast-back safe), the recursive-descent parsebf@ a correct parser fag.

A subject of further research is how to translate the abowpegties of grammab into equivalent
properties of grammag.

9 Previous work

Our method is inspired by one outlined by Hill in [4]. His repdescribes only the algorithm, but it is

clear that it follows from the idea of reconstructing theursion path. Each entry of recursion class is
represented by data structure called the "grower”. The grawntains all seeds of its recursion class,
and for each seed, the chains of its parents. Parsing pnecéatuthe entry consists of inretpreting the
grower; it starts with the seeds and follows their parentreha



The traditional way of eliminating left recursion is to reét@rthe grammar so that left recursion is
replaced by right recursion. It can be found, for examplé¢ljnpage 176. It consists of replacing

AsAalb (12)

by

A —-Db A’
A —sa N | e,

Figure 6 shows the result of this rewriting for a grammar giire [11] as an example of intersecting
left-recursion loops. The process is cumbersome and pesdacge results; most important, it loses the
spirit of the grammar. For simple grammars, the result ig gemilar to our dual grammar. But, our dual
grammar, in spite of apparently losing the spirit, producasect syntax tree of the original grammar.
And, as can be seen from the illustration, it is obtained bathar straightforward rewriting of syntax
rules.

Grammar Classic rewrite Dual grammar

E—-Fnln E—-Fnln E — n $E

FS5E+x |G- F—=-(+x]|G-)F $E — + x $F | $G | ¢

G— Hm | E Fo—» (n +x) F’ | ¢ $F — n $E

H— Gy G— Hm | nl| (n+x)F n) & $G — - $F | $H
G’— (- F n) G | ¢ $H — y m $G

H—- @Gyl (an+x) FPnG y) W
H— (m G y) H | ¢

Figure 6: Example of classic rewrite

In[13], Warth and al. suggested how to handle left recurgid®arsing Expression Grammar (PEG) by
modifying the packrat parser. The principle of packrat jpars that the result of each parsing procedure
is saved in a "memoization table”. The table is consulteditwe&ach new call, and if a result is found
for the same position in input, it is used directly insteadalfing the procedure.

The idea can be explained on the example grammar (12). Bferfirst call toA, we save "failed” as
the result ofA at the current position. Procedutestarts with the alternativéa which requires calling.
and ther. But the result of calling\ is already in the table; as it is "failed”, the alternative fails, and
A callsb. If it succeeds, we savib’ as the new result of.

We backtrack and calhk again. AlternativeAa obtains now’b’ as the result ofi and callsa. If it
succeeds, we savda’ as the new result df. This is referred to as "growing the seed”.

We repeat this as long asin Aa succeeds. When it fails, we stop the repetition and are litft the
resultba...a’ of Ain the table.

In [12], Tratt indicated that this method does not requirekpat parser, only a table for results of left-
recursive procedures. Also, that left-recursive non-teafs can be detected by analyzing the grammar.

Medeiros et al. [7] introduced the notion of "bounded leftursion”. The idea can again be explained
on the example grammar (12). Procedurés required to try alternativda exactly n times before
choosingb. The string thus consumed is savedA&s We call procedure repeatedly with increasing
values of the "boundt, obtaininga?, A', A2, etc..

Left part of Figure 7 illustrates how? is obtained for input baax’. The arrows represent successful
calls. One can see from the Figure how this is obtained frorads&! = ’ba’, and this fromA? = b,
Right part of Figure 7 shows what happens+#for 3. Dotted arrows represent failing calls. Ta@ the

10



Aa X
a I
£ /N
A2 = ’baa’ A3 — b

Figure 7: Example of bounded left recursion applied to ’baax’

highestAa encounters x’ and fails, and so does. Procedure,, receiving failure fromaa, consumes
b, giving A? = *b’. This is the signal to stop repetition and return the saved

The methods from [12, 13] and [7] use memoization table; teggatedly evaluate the left-recursive
procedure in the process of growing the seed or incremetitiepound. None of these is the case with
our approach.

All methods [4, 7, 12, 13] must handle situations more compian the elementary example (12),
like indirect and nested left recursion. They add a subistlaanount of overhead to the mechanism of
procedure call. This is not the case with our method, whdreamhplexity is delegated to the task of
constructing the dual grammar. The only overhead are theusigractions of constructing the syntax
tree, but they must also be invisibly included in the abovehaws to record the pattern of procedure
calls.

In principle, we have a recursive-descent parser with @maglls to parsing procedures. If so desired,
it can use limited backtracking implemented with packrahtelogy. In addition, we offer a way to see
if the chosen method of handling choice expressions reisuttsrrect parser. None of the cited solutions
gives any hint on how to do it.

10 Unsolved problems

We did not include empty word in our grammar. (It appeared in the dual grammar, but only wit
a special function.) The result of addirgs that some expressions may derive empty string. These
expressions are referred toradlable, and can be identified as such by analyzing the grammatr.

Nullablee; ...ex in N — e;...e, and nullablee; in N — e4] ... |e, require new definition ofrst.

. . first .
If e1...e, for k < nis nullable inN — e; ...e,, we haveN =5 ¢, for < i < k + 1. If all ¢; are

nullable, we have to add/ first - N wherer N is a new non-terminal that derives all strings that may

) ) first . first
follow N. If anye; is nullable inN — 1] . .. |e,,, we haveN =5 ¢, for < i < n, andN — 7N.

The problem is thatV Frst N identifies now only apossibleleft recursion. An example is

A — (ale)Ablc whereA Firsg A, but A is left-recursive only if input does not start with This is

known as "hidden” left recursion. Our recursive ascent cafe defined for hidden left recursion, so
we have to check fogs in N — e; ... e, being potentially left-recursive and signal it as an erfidne
problem can be solved by redefining the grammar as

A — (Ablc) | (aAblce).

Nullable seed and nullable, . . . e,, in recursiveN — ejes... e, invalidate proof of Proposition 1.
That means the dual grammar can be left-recursive ew@rdibes not have a cycle.

11



Another kind of unsolved problem &— E+E|n, which results in a right-recursive parse forThis
is so because the secoRihvoked by (10) gobbles up all input before the ascent catirnos

The problem withE — E+E|n was signalled by Tratt in [12]. In fact, the right-recursikesult is
correct, but the grammar is ambiguous; Tratt explains wiyather, left-recursive, parse is desirable,
and offers a solution for direct left recursion.

A solution proposed in [7] extends the grammar by assignpipfities” to different occurrences &f
This opens new possibilities: a simple way of defining operptecedence. It is further exploited in [6].
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A Proof of Proposition 1

For N € Np ande € Np U 3, defineN s ¢ to mean that parsing proceduié may call parsing
procedure: on the same input:

— firstD . first
(@) ForN € R, =5 is the same as—.

(b) ForN € Rg, N "% 5 for each seed of C(N).

(c) For$R — ey ... e, growkR, 5]5]%ﬁrit|>3 €s.

(d) For R — growR, $R "% $P; for eachP; € C(R) such that’; > R.
Suppose is left-recursive, that is, there exidt , No, ..., Ny € Np whereN; first) Ny first  firstD

N and N, = N;. We start by showing that none of them can b&n

Assume thatV; € Ne. That meansV; is either inR or in R.

SupposeV; € R. BecauseV; is the same in both grammars, we h#&m(N,) = E(N1), SON; is also

in N, and thus ifN¢. FromN; ™% N, follows Ny =% N,

SupposeV; € Rg. According to (b),N, is a seed of£(N), which is either non-recursive or an entry,

and thus is ifN¢. For a seedV, of C(N;) holds N, % V.
First

The above can be repeated with, . . . , N to check thatV; € Ngforall1 <i < kandN; — N;11
for1 < i < k. As N, = N, the latter means that none d% belongs taR, so they must all be iR .
Moreover, they are all in the same recursion cl&gsy; ). According to (b),N, is a seed of£(N,), that
cannot be a member @f(N;). This is a contradiction, s&/; ¢ N¢, and this holds for the remaining
No,...,Np_1.

It follows that eachV; is a $-non-terminal oD. It cannot be that listed under (c) because thgn; is
es Which belongs tdN¢.

Hence, eachV; must have the form listed under (d). It follows thatNf = $R; for someR;, N; 1

first . . . first
must be &, such thatR; 1 — R;. Thus, exists in gramma¥ a sequence of non-terminalg, —

first first

... — Ry — Ry with Ry, = R;. Each of them has choice statemenf&®&;) and can derive itself in
k — 1 steps. O

B Proof of Proposition 2

We show that each string derived fralh € N U 3 according to grammalr can be derived according
to grammarD and vice-versa. We say that derivation has helgttt mean that its syntax tree has height
h. The proof is by induction on that height.

12



Induction base is the same in both directions: derivatiomafht 0. We consider terminal to be
derived from itself with syntax tree of height 0. The and D-derivations are identical.
The following two lemmas provide induction step for the twaridations.

Lemma 1. Assume that each string having G-derivation of height h > 0 from N € No U Y has
a D-derivation from N. Then the same holds for each string with G-derivation of height h + 1.

Proof. Take any stringv having G-derivation fromN € N¢ of heighth + 1.

(Case 1)N € R.

If N —eq...en,alle; areinNg andw = w ... wy, Where eachw; is G-derived frome; by derivation
of heighth or less. WeD-derivee; ...e,, from N, and then, according to induction hypothedis,
derivew = wy ... w,, frome; ...e,,.

If N — eq]...|en, wis G-derived from one ot; by derivation of height: or less. WeD-derivee;
from IV, and then, according to induction hypothedisderivew from e;.

(Case 2)NV € Rg.

The G-derivation ofw is shown in the left part of Figure 8. One can see that wy . .. w, Wherewy
is G-derived from a seed and far < i <, w; is eitherG-derived frome, ... e, (if Ry — e1...em)
or is empty worce (if R; — e1]...|en). All theseG-derivations are from members B and have

heighth or less. Thus, by induction hypothesis, exist correspandirderivations ofwyg, ..., w,. The
D-derivation ofw using these results is shown as the right part of Figure 8. O
/N /\
R,_1 wn S SRy
7/ \ /N
s Wp—1 wo w1 $R2
/ /
R; w2
/ N\ N\
SRR 1% $R;
/ /N
RQ w; o
/N AN
Ry we SR,
/N /\
S = Ro wy Wn-1 SRy
/N
wo Wnp, g

Figure 8: G-derivation and D-derivation from E. wq is derived from the seed. Otherwise w; is
derived from es, ..., e,, for sequence R; or ¢ for choice R;.

Lemma 2. Assume that each string having D-derivation of height h > 0 from N € No UX has
a G-derivation from N. Then the same holds for each string with D-derivation of height h + 1.

Proof. (The proof is a mirror image of the proof of Lemma 1, but wellspeut.) Take any stringo
having D-derivation fromN € N¢ of heighth + 1.
(Case 1N € R.
If N —eq...en,alejareinNg andw = w; ... w,, Where eachw; is D-derived frome; by derivation
of heighth or less. We&=-derivee; ... e,,, from N, and then, according to induction hypothesisgerive
w=wi...wy, frome;...e,.
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If N = ei|...|em, wis D-derived from one ot; by derivation of height: or less. WeG-derivee;
from IV, and then, according to induction hypothesisderivew frome;.

(Case 2)NV € Rp.

The D-derivation ofw is shown in the right part of Figure 8. One can see that wy . . . w, wherewy
is D-derived from a seed and far < i <, w; is either D-derived fromes ... e, (if R; — e1...em)
or is empty worde (if R; — ey]...|en). All these D-derivations are from members b and have

heighth or less. Thus, by induction hypothesis, exist correspandirderivations ofwy, ..., w,. The
G-derivation ofw using these results is shown as the left part of Figure 8. d
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