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A description is given of how a tree representing the evaluation 
of an arithmetic expression can be drawn in such a way that the 
number of accumulators needed for the computation can be 
represented in a straightforward manner. This representation 
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problem under the theory of graphs. An algorithm to solve this 
problem is presented. 
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1. I n t r o d u c t i o n  

In  [1], Naka t a  discussed the evaluation of an arith- 
metic expression in an order tha t  would minimize the 
number  of accumulators needed for the computation.  As 
shown below, the tree used in [1] can be modified in such 
a way tha t  the required number  of accumulators has a 
straightforward graphical representation. This representa- 
tion leads to the specific problem of a "min imum width"  
ordering of a tree, which is the subject of the present 
paper. 

To evaluate an expression, e.g. ( ( a  + b) - c . d ) /  
( e ( f  - g ) ) ,  one has to perform a number  of ari thmetic 
operat ions:A = a - k b ,  B = c . d , C = f - - g , D  = A - - B ,  
E = e. C, F = D / E ,  thus computing the partial  results 
A, B, -- • , E and final result F. This process can be repre- 
sented in the form of a tree, as in Figure 1. Each vertex 
of tha t  tree represents one operation; an arc from a 
vertex x to a vertex y represents a partial  result tha t  is 
used in the operation x and computed in the operation y. 

Choosing a feasible order for the operations is equiva- 

lent to a topological sorting of the tree, i.e. to placing 
its vertices in such a sequence tha t  a vertex x precedes 
a vertex y if there is an arc from y to x. (This condition 
is equivalent to the requirement tha t  each partial  result 
be evaluated before being used.) 
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The result of such a sorting is conveniently repre- 
sented as in Figure 2. In  the following, we call a diagram 
such as Figure 2 a "l ineup" of the three in Figure 1. 
I t  can be regarded as a timescale representation of the 
computation.  

Suppose we take a "snapshot"  of the computat ion 
while executing an operation x. Such a snapshot will show 
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FIG. 1 

some results of the previous operations being stored for 
further use and not participating in the operation x. I t  
is easy to see tha t  in Figure 2 these stored results are 
represented by  the arcs passing over the vertex x. I f  the 
number  of these arcs is w, we must  have at  least w -k 1 
storage elements (accumulators or core locations) at  our 
disposal at  the considered moment :  w for the results 
already stored and one for the result of x. The number  of 
storage elements we have to reserve for the entire com- 
putat ion is thus defined by  the maximum number  of 
arcs passing over a single vertex in Figure 2; we shall call 
this number  the "wid th"  of our "l ineup." The choice of 
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the best order of operation is thus reduced to construct- 
ing a minimum width lineup for the tree in Figure 1. 

In  Section 3 an algorithm to accomplish this construc- 
tion is suggested; Section 2 contains the definitions. 

Although the trees corresponding to ari thmetic ex- 
pressions are always binary, the discussion is not more 
complicated when the general case is considered. Thus 
in the following, the trees are not assumed to be binary. 
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2. D e f i n i t i o n s  

In  the following we use the concept of a (directed) 
graph, defined as an ordered pair (X, U) consisting of a 
nonempty set X of vertices and a set U of arcs. A n  arc 
from a vertex x E X to a vertex y E X is here denoted 
by (x, y) E U. For x, y E X such that  there exists an 
arc (x, y) E U, we call y a successor of x. The reader is 
assumed to be familiar with the elementary concepts of a 
path in a graph, a circuit, etc. 

A graph (X, U) is called a tree if it is finite, does not 
contain circuits, and contains a vertex r E X such that :  

(a) r is not the terminal vertex of any arc, and 
(b) every vertex x E X, x ~ r, is the terminal ver- 

tex of exactly one arc. 
The vertex r having the above properties is called the 

root of the tree. A vertex x E X that  is not the initial 
vertex of any arc is called a leaf of the tree; any vertex 
that  is not a leaf is called a node. For a tree G = (X, U) 
and its vertex x E X, we denote by G(x)  a subtree con- 
sisting of x and all vertices accessible from x via a path 
in G. A lineup of a tree G = (X, U) is formally defined 
as a sequence ? = (x~, x~, . - - ,  x~) of all vertices 
of G such that  for every arc (x~,x~) E U h o l d s j  < i. 
In  the l ineup~ = (xl, x~, . . -  x~), a n a r e  (x , ,x~)  E U 
is said to pass over a vertex x~ E X if j ~ k ~ i. 

For this lineup, let w~ denote the number of arcs 
passing over a vertex x~ E X. The width of the lineup 
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is then defined as the maximum of w~ for i = 1, 2, . . . ,  n, 
and is denoted W(~). 

3. A l g o r i t h m  

A minimum width lineup of a given tree G can be 
constructed by filling ia a table as in Figure 3. The table 
is divided into 3 columns and n rows. We start by enu- 
merating in column 1 all vertices of G. We write there, 
bot tom to top, first the root of G, then all its successors, 
then successors of these successors, and so on. To each 
vertex we thus assign one row of the table in such a 
manner that  if a vertex y is a successor of a vertex x, 
the row assigned to x lies below that  assigned to y. Having 
filled column 1, we complete the table row by row. 

Suppose we have have already completed m ~ 0 
rows, and are about to complete the next, the (m -Jr 1)-th 
row. Let the vertex corresponding to this row be x. We 
complete the (m 4- 1)-th row by  one of the following 
rules, depending on whether x is a leaf or node of G: 

Rule 1. If  x is a leaf of G, write 0 in column 2; write 
x in column 3. 

Rule 2. If  x is a node of G, find in G all successors of 
x; let them be y0, yl ,  " "  , yk where k ~ 0. Find in the 
table the rows assigned to y0, y l ,  " '"  , yk ; due to the 
way we have filled column 1, all of them must be among 
the m rows that  have already been completed. Let v(y~), 
for i = 0, 1, . . . ,  k, denote the contents of column 2 
in the row assigned to y~, and ~(y~) the contents of 
column 3 in that  row. Place y0, y~, • • • , yk in a sequence 
according to decreasing values of v(y~) for i = 0, 1, 
• . . ,  k. Let this sequence be (Y~0, Yil, " " ,  Ylk); then 
v(ylo) ~ v(yi l )  >= " '"  >= v(y~k). Compute the number 
p = max(p0,  pl ,  " " ,  pk) where Pi = v(y l j )  Jr j for 
j = 0, 1, . - .  , k. Write p in the (m + 1)-th row, column 
2; in column 3 write ¢(Y~0) followed by ¢(y~1), etc., 
followed by q(yik), followed by x. 

To illustrate the application of rule 2, the sequence 
(Y~0, yi~, . . . ,  Y~k) and the numbers p0, pl ,  " " ,  p~ 
are shown in Figure 3 to the right of each row that  was 
completed according to that  rule. For example, for x = D 
we have Y~o = F, y~ = H,  Yi2 = G, and po = v(y~o) 
+ 0 = 1, p,  = v(y , , )  + 1 = 2, p2 = v(y , , )  9- 2 = 2. 

We now demonstrate that  after completing the table, 
the sequence appearing in the last row, column 3, is a 
minimum width lineup of G. 

4. P r o o f  o f  t h e  A l g o r i t h m  

Suppose the table has been completed as above for a 
t r eeG  = (X, U) with roo t r .  F o r x E  X l e t v ( x )  be the 
number appearing in the row of the table assigned to x, 
column 2; let ?(x)  be the sequence appearing in the same 
row, column 3. The last row was assigned to the root r; 
for this row we have v(r)  and ~(r),  respectively. The 
following two theorems can be proved about the contents 
of the table. 

THEOREM 1. For every vertex x E X ,  ~ ( x )  is a l ineup 
of the subtree G(x), and its width is v ( x ) .  

THEOREM 2. For every lineup of G, its width is not 

less than v(r ) .  
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From Theorem 1 and the fact tha t  G(r) = G, it follows 
immediately tha t  the sequence e ( r )  appearing in the 
last row, column 3 is a lineup of G having width v(r) .  
Theorem 2 states tha t  this width is a minimal one. 

PROOF OF THEOREM 1. TO prove the theorem, it  is 
enough to demonstrate  tha t  (1) the theorem holds for 
every leaf of G, and (2) for every node x of G, if the theorem 
holds for all successors of x, it also holds for x. 

%p (~io) ,p (;;1) ~(yT. ) ~(y~k ) (x) I 

FIO. 4 

T h a t  (1) is true follows from rule 1. I f  x is a leaf, the 
subtree G(x) consists of a single vertex x. The sequence 
(x) is a lineup of such a tree and its width is 0. 

Tha t  (2) is true can be seen as follows. Let  x be a 
node of G, and let Yi0, Y~, • • • , Y~k be its successors, as 
in rule 2. Let  us assume tha t  the theorem holds for all 
these successors, i.e. tha t  for j = 0, 1, . . .  , k, e(Y~i) 
is a lineup of the subtree G(y~j) and its width is v(yg).  
The concatenation of 7'(Yi0), ~(Yil), " ' "  , e(Ylk) and (x) 
in rule 2 corresponds to a construction shown in Figure 4. 
Having k W 1 trees, G(yio), G(y~) ,  . . . ,  G(y~k), we 
construct the tree G(x) by adding the vertex x and 
k ~ 1 arcs, (x, Y~0), (x, y~),  . . .  , (x, Ylk). I t  is easy to 
see from Figure 4 tha t  the sequence 7,(x) so obtained 
must  be a lineup of G(x). To show tha t  the width of 
this lineup is v(x),  let us consider a vertex y belonging 
to the tree G(y~j), where 0 >= j >= k. I t  is easy to see tha t  
the number  of arcs passing over y is less than or equal to 
the number  p~ as defined in rule 2: there are j arcs, (x, Y~0), 
(x, Y~x), " " ,  (x, y~_,),  outside the tree G(yg) , and as 
many  as v(y~) arcs within tha t  tree. From this the width 
of ~(x) is bound to be max (p0, p~, " "  , p ,)  = v(x);  
the theorem thus holds for the vertex x also. 

PROOF Of THEOREM 2. The theorem obviously holds 
for v(r) = O. Assume v(r) > 0 and suppose there exists 
a lineup ~ of G having a width W(7,) < v(r) .  For every 
node x of G do the following: Find the sequence (Y~o, 
y~ ,  • • • , y~,) and the numbers p0, p~, • • • , p,  computed 
when completing the row assigned to x according to 
rule 2; then find the smallest j ,  0 >= j ~ k, such tha t  
p~ = v(x),  and mark  the arcs (x, Y~o), (x, y~,), . . - ,  
(x, y~).  For example, if x = D in Figure 3, then j 1 
and we mark  the arcs (D, F)  and (D, H ) .  The result of 
such a marking for the tree and table in Figure 3 is 
shown in Figure 5. One can easily see tha t  (1) every node 
of G is the initial vertex of at  least one marked arc, 

and (2) for every marked arc (x, y) E U, T x is the ini- 
tial vertex of at  least q "-b 1 marked arcs, where q = 
v(x) - v(y).  

Now mark  all leaves of G accessible from the  root r 
via the marked arcs; from (1) it follows tha t  there must  
be at  least one such leaf. Let  z E X be the marked leaf tha t  
appears farthest to the right in e; let t~ be the pa th  from 
r to z (obviously, ~ must  consist entirely of marked 
arcs). Take  an arc u = (x, y) E U belonging to t~. Let  
v(x) -- v(y) = q; according to (2), x is then the initial 
vertex of at  least q W 1 marked arcs. I f  q > 0, let u l ,  
u2, • • • ,  uq be the marked arcs beginning at  x and distinct 
from u. For i = 1, 2, • • • , q set out from x via the arc u~ 
and follow the marked arcs as far as possible (for illus. 
t rat ion see Figure 6). The pa th  tL~ so traversed must  end 
in a marked leaf, and thus to the left of z in the sequence 

(z was so chosen). Since e is a lineup of G, x must  be 
to the right of z in ~, and thus the pa th  t~ must  contain 
an arc u (  passing over z. This gives q arcs passing over 
z: ul', u2', . . . ,  u~'. By  taking in turn  all arcs in g as the 
are u above, one can find in this way v(r) -- v(z) = v(r) 
arcs passing over z, which contradicts assumption tha t  
W(~,) < v(r). (Notice tha t  i t  could be proved, in a similar 
way, tha t  for every x E X ,  v(x) is a minimal width for all 
possible lineups of the subtree G(x).)  

0 

e ~  Numbers are values 
of v(x) 

z = L ,  r = A  

I J F K L H G D E C B A 

• = marked leaf 

= marked arc 

Fro. 5 
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5. Discussion 
If the tree G represents a computation as described in 

the introduction, the various objects discussed in Sec- 
tions 2 through 4 have the following interpretation. A 
leaf of G represents an operation performed entirely on 
initial data, and a node of G an operation having at 
least one partial result as its argument. The root of G 
represents the operation of computing the final result. 
A lineup ~ of G represents a permissible order of executing 
the operations; it can be looked upon as a kind of pro- 
gram for the computation represented by G. The width 
W(~) represents the number of storage cells required to 
execute that program, minus one. For an operation x, 
the subtree G(x) represents a part of the computation 
that consists of x and all operations needed to evaluate 
the arguments of x. Theorem 1 states that the sequence 
¢(x) appearing in the row of the table assigned to x 
is a valid program for the "partial" computation G(x), 
and that the number v(x) appearing in the same row is 
the number of storage cells required to execute this 

program, minus one. The algorithm presented here con- 
sists of constructing such "partial" programs. We first 
construct the most elementary ones by using rule 1; 
then we combine them according to rule 2 in order to 
obtain those which are more and more complex. 

The sequences ~(yij) appearing in rule 2 represent the 
programs for evaluating the arguments of the operation 
x. When combining them in one program ~(x), we order 
them according to decreasing storage requirements. This 
principle is identical with the principle suggested in 
[1] and our algorithm is basically the same as the al- 
gorithm described there. The proof stated in Section 4 
may thus be regarded as a formal proof of the algorithm 
given in [1]. 
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Letters to the Editor 

Simple Procedures That Lose Precision 
EDITOR: 

A number of readers have written concerning the article by G. D. 
Miller "An Algorithm for the Probability of the Union of a Large 
Number of Events" [Comm. ACM 11, 9 (Sept. 1968), 630-631], 
pointing out the well-known simplification: 

and the trivial computation it implies. 
However, computers perform rational arithmetic of limited 

precision. For small event probabilities, therefore, the simple 
procedure loses precision rapidly. It  should have been pointed 
out in the paper that increased precision is the principal merit of 
the algorithm. Both the referee and myself would like to apologize 
to all who may have been misled for not asking the author to 
include a few words about precision. 

ROBERT M. McCLURE, Editor 
Programming Techniques Department, CA CM 

A Glossary of  Computer Science 

EDITOR: 
I feel a much needed addition to the editions of Communications 

of the ACM would be a glossary of computer science terms. This 
glossary could logically be divided into two parts. The first part 
would contain those words and terms which have come into stand- 
ard usage and also have a single meaning. This part would be 
printed toward the front of each edition (preferably) or at least 
once each year. The second part would be an extension of the 
"key words and phrases" which precedes the main text of each 
article. This part would define those terms which are particular to 
the article or which are being used with a meaning different from 
the standard usage (i.e. the main glossary). 

STEPHEN LOW~ 
Litton Industries 
P.O. Box 7601 
Van Nuys, CA 81408 

An ACM Meeting in Chicago? 
EDITOR: 

Recent events have demonstrated the imprudence of holding a 
meeting in Chicago. The American Psychological Association and 
the American Sociological Association have recognized Chicago's 
dangers, and they have canceled projected meetings in that city. 

With a view to protecting its membership, the ACM should 
follow suit. The ACM Conference of 1971 should be relocated. 

ROBERT R. FENICHEL 
MIT, 545 Technology Square 
Cambridge, MA 0~189 

Shortening the Mask Querying Routine in Peekabit 
Key Words and Phrases: peekaboo, superimposed coding, natural 

language searching, text searching, information compaction, 
computer search technique 

CR Categories: 3.74 

EDITOR: 
R. G. Glasser, professor of computer science and physics at the 

University of Maryland, has pointed out to me (9/25/68) that the 
mask querying routine in PEEKABIT [Comm. ACM 11 (Sept. 
1968), 595-598] can be shortened by about 20 percent time-wise 
if the master mask is stored on the master tape in complemented 
form (there is no reason in our programs why it could not be) and 
queried as follows: 

CAL CPMq-4,1 First word of question mask 
ANA KPCOM First word of complemented master mask 
TNZ NOTIN If not zero, one or more words not present 
CAL CPMq-5,1 Second word, question mask 
ANA KPCOM-t-1 
TNZ NOTIN 
etc. 

Total program running time would not be reduced 20 percent, 
of course, but Professor Glasser's suggested coding is much better 
and should effect some overall saving. 

Fi~ED C. HUTTON 
Computing Technology Center 
Union Carbide Corporation 
Nuclear Division 
Oak Ridge, TN 87880 
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