
J. C. Reynolds, Editor

On Arithmetic Expressions
and Trees

~,. n . REDZIEJOWSKI*
I B M Nordic Laboratory, Liding6, Sweden

A description is given of how a tree representing the evaluation
of an arithmetic expression can be drawn in such a way that the
number of accumulators needed for the computation can be
represented in a straightforward manner. This representation
reduces the choice of the best order of computation to a specific
problem under the theory of graphs. An algorithm to solve this
problem is presented.

KEY WORDS AND PHRASES: arithmetic expression, compiler design, graph
theory, programming, storage minimization, topological ordering, tree

CR CATEGORIES: 4.12, 5.32

1. I n t r o d u c t i o n

In [1], Naka t a discussed the evaluation of an arith-
metic expression in an order tha t would minimize the
number of accumulators needed for the computation. As
shown below, the tree used in [1] can be modified in such
a way tha t the required number of accumulators has a
straightforward graphical representation. This representa-
tion leads to the specific problem of a "min imum width"
ordering of a tree, which is the subject of the present
paper.

To evaluate an expression, e.g. ((a + b) - c . d) /
(e (f - g)) , one has to perform a number of ari thmetic
operat ions:A = a - k b , B = c . d , C = f - - g , D = A - - B ,
E = e. C, F = D / E , thus computing the partial results
A, B, -- • , E and final result F. This process can be repre-
sented in the form of a tree, as in Figure 1. Each vertex
of tha t tree represents one operation; an arc from a
vertex x to a vertex y represents a partial result tha t is
used in the operation x and computed in the operation y.

Choosing a feasible order for the operations is equiva-

lent to a topological sorting of the tree, i.e. to placing
its vertices in such a sequence tha t a vertex x precedes
a vertex y if there is an arc from y to x. (This condition
is equivalent to the requirement tha t each partial result
be evaluated before being used.)

• Present Address: Laboratoriet for Impuls-og Cifferteknik,
Danmarks Tekniske tICjskole, 2800 Lyngby, Danmark

The result of such a sorting is conveniently repre-
sented as in Figure 2. In the following, we call a diagram
such as Figure 2 a "l ineup" of the three in Figure 1.
I t can be regarded as a timescale representation of the
computation.

Suppose we take a "snapshot" of the computat ion
while executing an operation x. Such a snapshot will show

x
1

x 2 ~ ~",,,, D
x 5 ~ x6

xS '-
FIG. 1

some results of the previous operations being stored for
further use and not participating in the operation x. I t
is easy to see tha t in Figure 2 these stored results are
represented by the arcs passing over the vertex x. I f the
number of these arcs is w, we must have at least w -k 1
storage elements (accumulators or core locations) at our
disposal at the considered moment : w for the results
already stored and one for the result of x. The number of
storage elements we have to reserve for the entire com-
putat ion is thus defined by the maximum number of
arcs passing over a single vertex in Figure 2; we shall call
this number the "wid th" of our "l ineup." The choice of

A

X x 1 x2 x3 x4 x5 6
Fro. 2

the best order of operation is thus reduced to construct-
ing a minimum width lineup for the tree in Figure 1.

In Section 3 an algorithm to accomplish this construc-
tion is suggested; Section 2 contains the definitions.

Although the trees corresponding to ari thmetic ex-
pressions are always binary, the discussion is not more
complicated when the general case is considered. Thus
in the following, the trees are not assumed to be binary.

Volume 12 / Number 2 / February, 1969 Communicat ions of the ACM 81

2. D e f i n i t i o n s

In the following we use the concept of a (directed)
graph, defined as an ordered pair (X, U) consisting of a
nonempty set X of vertices and a set U of arcs. A n arc
from a vertex x E X to a vertex y E X is here denoted
by (x, y) E U. For x, y E X such that there exists an
arc (x, y) E U, we call y a successor of x. The reader is
assumed to be familiar with the elementary concepts of a
path in a graph, a circuit, etc.

A graph (X, U) is called a tree if it is finite, does not
contain circuits, and contains a vertex r E X such that :

(a) r is not the terminal vertex of any arc, and
(b) every vertex x E X, x ~ r, is the terminal ver-

tex of exactly one arc.
The vertex r having the above properties is called the

root of the tree. A vertex x E X that is not the initial
vertex of any arc is called a leaf of the tree; any vertex
that is not a leaf is called a node. For a tree G = (X, U)
and its vertex x E X, we denote by G(x) a subtree con-
sisting of x and all vertices accessible from x via a path
in G. A lineup of a tree G = (X, U) is formally defined
as a sequence ? = (x~, x~, . - - , x~) of all vertices
of G such that for every arc (x~,x~) E U h o l d s j < i.
In the l ineup~ = (xl, x~, . . - x~), a n a r e (x , ,x~) E U
is said to pass over a vertex x~ E X if j ~ k ~ i.

For this lineup, let w~ denote the number of arcs
passing over a vertex x~ E X. The width of the lineup

I

J B

Col.1: ! Col. 2: Col. 3:

L 0 L
K 0 K
J 0 J
I 0 I
H 1 K L H
G 0 G
F 1 I J F
E 0 E
D 2 I J F K L H G D
C 2 I J F K L H G D EC
B 0 B
A 2 I J F K L H G D E C B A

K, L; 0, 1;

I, J; o, 1;

F, H, G; 1, 2, 2;
D, E; 2, 1;

C, B; 2, 1;

Fie. 3

is then defined as the maximum of w~ for i = 1, 2, . . . , n,
and is denoted W(~).

3. A l g o r i t h m

A minimum width lineup of a given tree G can be
constructed by filling ia a table as in Figure 3. The table
is divided into 3 columns and n rows. We start by enu-
merating in column 1 all vertices of G. We write there,
bot tom to top, first the root of G, then all its successors,
then successors of these successors, and so on. To each
vertex we thus assign one row of the table in such a
manner that if a vertex y is a successor of a vertex x,
the row assigned to x lies below that assigned to y. Having
filled column 1, we complete the table row by row.

Suppose we have have already completed m ~ 0
rows, and are about to complete the next, the (m -Jr 1)-th
row. Let the vertex corresponding to this row be x. We
complete the (m 4- 1)-th row by one of the following
rules, depending on whether x is a leaf or node of G:

Rule 1. If x is a leaf of G, write 0 in column 2; write
x in column 3.

Rule 2. If x is a node of G, find in G all successors of
x; let them be y0, yl , " " , yk where k ~ 0. Find in the
table the rows assigned to y0, y l , " '" , yk ; due to the
way we have filled column 1, all of them must be among
the m rows that have already been completed. Let v(y~),
for i = 0, 1, . . . , k, denote the contents of column 2
in the row assigned to y~, and ~(y~) the contents of
column 3 in that row. Place y0, y~, • • • , yk in a sequence
according to decreasing values of v(y~) for i = 0, 1,
• . . , k. Let this sequence be (Y~0, Yil, " " , Ylk); then
v(ylo) ~ v(yi l) >= " '" >= v(y~k). Compute the number
p = max(p0, pl , " " , pk) where Pi = v(y l j) Jr j for
j = 0, 1, . - . , k. Write p in the (m + 1)-th row, column
2; in column 3 write ¢(Y~0) followed by ¢(y~1), etc.,
followed by q(yik), followed by x.

To illustrate the application of rule 2, the sequence
(Y~0, yi~, . . . , Y~k) and the numbers p0, pl , " " , p~
are shown in Figure 3 to the right of each row that was
completed according to that rule. For example, for x = D
we have Y~o = F, y~ = H, Yi2 = G, and po = v(y~o)
+ 0 = 1, p, = v(y , ,) + 1 = 2, p2 = v(y , ,) 9- 2 = 2.

We now demonstrate that after completing the table,
the sequence appearing in the last row, column 3, is a
minimum width lineup of G.

4. P r o o f o f t h e A l g o r i t h m

Suppose the table has been completed as above for a
t r eeG = (X, U) with roo t r . F o r x E X l e t v (x) be the
number appearing in the row of the table assigned to x,
column 2; let ?(x) be the sequence appearing in the same
row, column 3. The last row was assigned to the root r;
for this row we have v(r) and ~(r), respectively. The
following two theorems can be proved about the contents
of the table.

THEOREM 1. For every vertex x E X , ~ (x) is a l ineup
of the subtree G(x), and its width is v (x) .

THEOREM 2. For every lineup of G, its width is not

less than v(r) .

82 Communica t ions of the ACM Volume 12 / Number 2 / February, 1969

From Theorem 1 and the fact tha t G(r) = G, it follows
immediately tha t the sequence e (r) appearing in the
last row, column 3 is a lineup of G having width v(r) .
Theorem 2 states tha t this width is a minimal one.

PROOF OF THEOREM 1. TO prove the theorem, it is
enough to demonstrate tha t (1) the theorem holds for
every leaf of G, and (2) for every node x of G, if the theorem
holds for all successors of x, it also holds for x.

%p (~io) ,p (;;1) ~(yT.) ~(y~k) (x) I

FIO. 4

T h a t (1) is true follows from rule 1. I f x is a leaf, the
subtree G(x) consists of a single vertex x. The sequence
(x) is a lineup of such a tree and its width is 0.

Tha t (2) is true can be seen as follows. Let x be a
node of G, and let Yi0, Y~, • • • , Y~k be its successors, as
in rule 2. Let us assume tha t the theorem holds for all
these successors, i.e. tha t for j = 0, 1, . . . , k, e(Y~i)
is a lineup of the subtree G(y~j) and its width is v(yg).
The concatenation of 7'(Yi0), ~(Yil), " ' " , e(Ylk) and (x)
in rule 2 corresponds to a construction shown in Figure 4.
Having k W 1 trees, G(yio), G(y~) , . . . , G(y~k), we
construct the tree G(x) by adding the vertex x and
k ~ 1 arcs, (x, Y~0), (x, y~), . . . , (x, Ylk). I t is easy to
see from Figure 4 tha t the sequence 7,(x) so obtained
must be a lineup of G(x). To show tha t the width of
this lineup is v(x), let us consider a vertex y belonging
to the tree G(y~j), where 0 >= j >= k. I t is easy to see tha t
the number of arcs passing over y is less than or equal to
the number p~ as defined in rule 2: there are j arcs, (x, Y~0),
(x, Y~x), " " , (x, y~_,), outside the tree G(yg) , and as
many as v(y~) arcs within tha t tree. From this the width
of ~(x) is bound to be max (p0, p~, " " , p ,) = v(x);
the theorem thus holds for the vertex x also.

PROOF Of THEOREM 2. The theorem obviously holds
for v(r) = O. Assume v(r) > 0 and suppose there exists
a lineup ~ of G having a width W(7,) < v(r) . For every
node x of G do the following: Find the sequence (Y~o,
y~ , • • • , y~,) and the numbers p0, p~, • • • , p, computed
when completing the row assigned to x according to
rule 2; then find the smallest j , 0 >= j ~ k, such tha t
p~ = v(x), and mark the arcs (x, Y~o), (x, y~,), . . - ,
(x, y~). For example, if x = D in Figure 3, then j 1
and we mark the arcs (D, F) and (D, H) . The result of
such a marking for the tree and table in Figure 3 is
shown in Figure 5. One can easily see tha t (1) every node
of G is the initial vertex of at least one marked arc,

and (2) for every marked arc (x, y) E U, T x is the ini-
tial vertex of at least q "-b 1 marked arcs, where q =
v(x) - v(y).

Now mark all leaves of G accessible from the root r
via the marked arcs; from (1) it follows tha t there must
be at least one such leaf. Let z E X be the marked leaf tha t
appears farthest to the right in e; let t~ be the pa th from
r to z (obviously, ~ must consist entirely of marked
arcs). Take an arc u = (x, y) E U belonging to t~. Let
v(x) -- v(y) = q; according to (2), x is then the initial
vertex of at least q W 1 marked arcs. I f q > 0, let u l ,
u2, • • • , uq be the marked arcs beginning at x and distinct
from u. For i = 1, 2, • • • , q set out from x via the arc u~
and follow the marked arcs as far as possible (for illus.
t rat ion see Figure 6). The pa th tL~ so traversed must end
in a marked leaf, and thus to the left of z in the sequence

(z was so chosen). Since e is a lineup of G, x must be
to the right of z in ~, and thus the pa th t~ must contain
an arc u (passing over z. This gives q arcs passing over
z: ul', u2', . . . , u~'. By taking in turn all arcs in g as the
are u above, one can find in this way v(r) -- v(z) = v(r)
arcs passing over z, which contradicts assumption tha t
W(~,) < v(r). (Notice tha t i t could be proved, in a similar
way, tha t for every x E X , v(x) is a minimal width for all
possible lineups of the subtree G(x).)

0

e ~ Numbers are values
of v(x)

z = L , r = A

I J F K L H G D E C B A

• = marked leaf

= marked arc

Fro. 5

u~ q

z y x r

. . . . path~

Fro. 6

Volume 12 / Number 2 / February, 1969 Communica t ions of t he ACM 83

5. Discussion
If the tree G represents a computation as described in

the introduction, the various objects discussed in Sec-
tions 2 through 4 have the following interpretation. A
leaf of G represents an operation performed entirely on
initial data, and a node of G an operation having at
least one partial result as its argument. The root of G
represents the operation of computing the final result.
A lineup ~ of G represents a permissible order of executing
the operations; it can be looked upon as a kind of pro-
gram for the computation represented by G. The width
W(~) represents the number of storage cells required to
execute that program, minus one. For an operation x,
the subtree G(x) represents a part of the computation
that consists of x and all operations needed to evaluate
the arguments of x. Theorem 1 states that the sequence
¢(x) appearing in the row of the table assigned to x
is a valid program for the "partial" computation G(x),
and that the number v(x) appearing in the same row is
the number of storage cells required to execute this

program, minus one. The algorithm presented here con-
sists of constructing such "partial" programs. We first
construct the most elementary ones by using rule 1;
then we combine them according to rule 2 in order to
obtain those which are more and more complex.

The sequences ~(yij) appearing in rule 2 represent the
programs for evaluating the arguments of the operation
x. When combining them in one program ~(x), we order
them according to decreasing storage requirements. This
principle is identical with the principle suggested in
[1] and our algorithm is basically the same as the al-
gorithm described there. The proof stated in Section 4
may thus be regarded as a formal proof of the algorithm
given in [1].

RECEIVED MARCH, 1968; REVISED AUGUST, 1968

REFERENCES

1. NAKATA, I. On compiling algorithms for arithmetic expres-
sions. Comm. ACM 10, 8 (Aug. 1967), 492-494.

Letters to the Editor

Simple Procedures That Lose Precision
EDITOR:

A number of readers have written concerning the article by G. D.
Miller "An Algorithm for the Probability of the Union of a Large
Number of Events" [Comm. ACM 11, 9 (Sept. 1968), 630-631],
pointing out the well-known simplification:

and the trivial computation it implies.
However, computers perform rational arithmetic of limited

precision. For small event probabilities, therefore, the simple
procedure loses precision rapidly. It should have been pointed
out in the paper that increased precision is the principal merit of
the algorithm. Both the referee and myself would like to apologize
to all who may have been misled for not asking the author to
include a few words about precision.

ROBERT M. McCLURE, Editor
Programming Techniques Department, CA CM

A Glossary of Computer Science

EDITOR:
I feel a much needed addition to the editions of Communications

of the ACM would be a glossary of computer science terms. This
glossary could logically be divided into two parts. The first part
would contain those words and terms which have come into stand-
ard usage and also have a single meaning. This part would be
printed toward the front of each edition (preferably) or at least
once each year. The second part would be an extension of the
"key words and phrases" which precedes the main text of each
article. This part would define those terms which are particular to
the article or which are being used with a meaning different from
the standard usage (i.e. the main glossary).

STEPHEN LOW~
Litton Industries
P.O. Box 7601
Van Nuys, CA 81408

An ACM Meeting in Chicago?
EDITOR:

Recent events have demonstrated the imprudence of holding a
meeting in Chicago. The American Psychological Association and
the American Sociological Association have recognized Chicago's
dangers, and they have canceled projected meetings in that city.

With a view to protecting its membership, the ACM should
follow suit. The ACM Conference of 1971 should be relocated.

ROBERT R. FENICHEL
MIT, 545 Technology Square
Cambridge, MA 0~189

Shortening the Mask Querying Routine in Peekabit
Key Words and Phrases: peekaboo, superimposed coding, natural

language searching, text searching, information compaction,
computer search technique

CR Categories: 3.74

EDITOR:
R. G. Glasser, professor of computer science and physics at the

University of Maryland, has pointed out to me (9/25/68) that the
mask querying routine in PEEKABIT [Comm. ACM 11 (Sept.
1968), 595-598] can be shortened by about 20 percent time-wise
if the master mask is stored on the master tape in complemented
form (there is no reason in our programs why it could not be) and
queried as follows:

CAL CPMq-4,1 First word of question mask
ANA KPCOM First word of complemented master mask
TNZ NOTIN If not zero, one or more words not present
CAL CPMq-5,1 Second word, question mask
ANA KPCOM-t-1
TNZ NOTIN
etc.

Total program running time would not be reduced 20 percent,
of course, but Professor Glasser's suggested coding is much better
and should effect some overall saving.

Fi~ED C. HUTTON
Computing Technology Center
Union Carbide Corporation
Nuclear Division
Oak Ridge, TN 87880

84 C o m m u n i c a t i o n s o f the ACM Volume 12 / Number 2 / February, 1969

