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Abstract. Parsing Expression Grammar (PEG) is a new way to specify
recursive-descent parsers with limited backtracking. The use of backtracking
lifts the LL(1) restriction usually imposed by top-down parsers. In addition,
PEG can directly define the structures that usually require a separate ”lexer”
or ”scanner”. This paper outlines a tool, named Mouse, to transcribe PEG
into an executable parser written in Java. An integral feature of Mouse is the
mechanism for specifying semantics (also in Java). This makes Mouse a conve-
nient tool if one needs an ad-hoc language processor. The name ” Mouse” sets
this tool apart from another parser generator named ” Rats!” that produces a
storage-hungry ”packrat parser”.

1 Introduction

Recursive-descent parsing is a top-down method of syntax analysis in which we execute
a set of recursive procedures to process the input. It was suggested as early as in 1961
by Lucas [6]. The great advantage of a recursive-descent parser is its simplicity and
clear relationship to the grammar. For smaller grammars, the parser can be easily
produced and maintained by hand. This is contrary to bottom-up parsers, normally
driven by large tables that have no obvious relationship to the grammar; these tables
must be mechanically generated.

The problem with constructing recursive-descent parsers from a classical context-free
grammar is that the grammar must have the so-called LL(1) property. Forcing the
language into the LL(1) mold can make the grammar — and the parser — unreadable.

The LL(1) restriction can be circumvented by the use of backtracking. However,
full backtracking may require exponential time. A reasonable compromise is limited
backtracking: never try another alternative after one alternative already succeeded on
a portion of input.

Recently, Ford [1-3] introduced a language for writing recursive-descent parsers with
limited backtracking. It is called Parsing Expression Grammar (PEG) and has the
form of a grammar that can be easily transcribed into a set of recursive procedures.

In addition to backtracking, PEG can directly define structures that normally require
a separate "lexer” or ”scanner”. Together with lifting of the LL(1) restriction, this
gives a very convenient tool when we need an ad-hoc parser for some application.

Theoretically, even the limited backtracking may require a lot of time. In [1,2], PEG
was introduced together with a technique called packrat parsing. Packrat parsing han-
dles backtracking by extensive memoization: storing all results of parsing procedures.



It guarantees linear parsing time at a huge memory cost. There exists a complete
parser generator named Rats! [4,5] that produces packrat parsers from PEG.

Excessive backtracking does not matter in small interactive applications where the
input is short and performance not critical. Moreover, experiments reported in [7, 8]
demonstrated a moderate backtracking activity in PEG parsers for programming
languages Java 1.5 and C.

This paper presents a tool, named Mouse, that translates PEG into a set of recursive
procedures. The result is a straightforward code that closely reflects the grammar. It
is not a packrat parser. The run-time storage requirements are limited to the usual
parser stack.

Both Mouse and the resulting parser are written in Java.

An integral feature of Mouse is the mechanism for specifying semantics, also in Java.
Unlike many parser generators, Mouse does not provide automatic generation of syn-
tax trees. However, one can always do it by specifying suitable semantics, and create
trees that best suit the particular purpose.

Complete documentation can be found in the user’s manual [10]. All materials can be
downloaded from the site http://www.romanredz.se/freesoft.htm.

2 Parsing Expression Grammar

Parsing Expression Grammar is a collection of ”parsing expressions”.

Each parsing expression specifies a procedure to recognize certain text patterns. The
procedure tries to recognize a portion of input text. If it succeeds, it ”consumes” the
recognized portion and indicates "success”. Otherwise it indicates ”failure” and does
not consume anything.

st Recognize string s.
[s] Recognize any character appearing in string s.
[ci-c2] Recognize any character from the range ci—ca.

- Recognize any character (fails only at the end of input).

e? Call e and return success whether it succeeded or not.
ex* Call e repeatedly as long as it succeeds. Always return success.
e+ Call e repeatedly as long as it succeeds.

Return success if e succeeded at least once.

&e Look-ahead: call e and backtrack. Return success if e succeeded.
le Look-ahead: call e and backtrack. Return success if e failed.
e1...en Sequence: Call ey, ..., e, in this order. Backtrack if any of them fails.
e1/.../en | Choice: Call e1,...,e,, in this order, until one of them succeeds.

Figure 1. Parsing Expressions.



A parsing expression can have one of the eleven forms listed in Figure 1. The first four
directly test the input. The remaining seven do their job by calling other expressions.
These expressions, denoted by e, eq, ..., e, in the Figure, can be specified either by
name or explicitly, enclosed in parentheses if needed. For a precise definition, the
reader is referred to [3,7-9].

The grammar is supplied to Mouse as one or more "rules” of the form:
name = exrpr;

where expr is a parsing expression, and name is a name given to it. White space is
allowed everywhere except inside names. Comments starting with a double slash and
extending to the end of a line are also allowed. The order of the rules does not matter,
except that the expression appearing first defines the ”top procedure”, invoked at the
start of the parser.

A specific grammar may look like this:

Input = Space Sum !_ ;

Sum = Number (Plus Number)x* ;
Number = Digits Space ;

Plus = "+" Space ;

Digits = [0-9]+ ;

Space =" "k ;

It defines a parser consisting of six named procedures. One can easily see that the
parser accepts one or more integers separated by plus and terminated by end of input.
It allows white space around the items; notice that this is a feature usually delegated
to a separate ”lexer”.

3 Generated parser

The parser generated by Mouse is a Java class with name given by the user, for
example "myParser".

The procedures that implement parsing expressions are methods in that class. They
have names of the expressions they implement. Procedures that implement inner
expressions have generated names.

Figure 2 shows fragments of the parser generated from the example given above.
Notice the procedure Sum_0 generated for the inner expression (Plus Number).

The generated parser is a subclass of mouse . runtime.ParserBase provided by Mouse.
The class ParserBase contains standard services such as parser stack, access to input,
initialization, error handling. The methods begin, accept, reject, acceptInner,
rejectInner, and next used in the parsing procedures are inherited from that class.

The method begin pushes a new entry on the parser stack. Methods accept and
acceptInner handle successful termination of a named, respectively inner, expression
and return true. Methods reject and rejectInner handle unsuccessful termination
and return false. They perform backtracking when applicable.

The method next is an example of built-in procedures that directly access the input.
The particular call next (’+’) checks if the next character is "+" and consumes it
if so.



bozlean Sum() // Sum = Number (Plus Number)*

begin("Sum");
if (!Number()) return reject();

while (Sum_0Q));
return accept();

}
bozlean Sum_0() // Plus Number

begin("");

if (!Plus()) return rejectInner();
if (!Number()) return rejectInner();
return acceptInner();

}

boolean Plus() // Plus = "+" Space

{
begin("Plus");
if (!'next(’+’)) return reject();
if (!Space()) return reject();
return accept();

Figure 2. Examples of parsing procedures.

4 Specifying semantics

The semantics is defined by providing ”semantic actions” that will be invoked from
parsing procedures. Semantic actions are methods in a separate class written by the
user. This class must be a subclass of mouse.runtime.SemanticsBase provided by
Mouse. It can have any name chosen by the user, for example "mySemantics". The
class SemanticsBase contains ”helper methods” that give access to results of the
parsing. Figure 3 shows the class structure of a parser with semantics.

ParserBase SemanticsBase

(Mouse) (Mouse

stack | _____ | __ helper

access method
begin T
accept |
etc. |
|
Il

i

1t B

parsing semantic

procedure ——————————7 F™ action
myParser mySemantics
(generated) (by user)

Figure 3. Parser with semantics.



All four classes are instantiated by a constructor that is included in the generated
parser. The constructor establishes references between the instantiated objects.

The calls to semantic actions are indicated in the grammar by adding the action’s
name in braces at the end of a rule. Suppose we want to provide semantic actions
for Sum and Number, named, respectively, sum and number. This is indicated in the
grammar as follows:

Input = Space Sum !_ ;

Sum = Number (Plus Number)* {sum} ;
Number = Digits Space {number} ;

Plus = "+" Space ;

Digits = [0-9]+ ;

Space =" "x ;

It results in Mouse generating this code for the two parsing procedures:

bozlean Sum() // Sum = Number (Plus Number)x*

begin("Sum") ;

if (!Number()) return reject();
while (Sum_0Q));

sem.sum() ;

return accept();

}
boolean Number () // Number = Digits Space
{
begin("Number") ;
if (!Digits()) return reject();
if (!Space()) return reject();
sem.number () ;
return accept();
}

where sem is a reference to mySemantics, available in myParser. As one can see, each
procedure calls its semantic action as the last thing before a successful return.

An outline of the corresponding class mySemantics is shown in Figure 4. We are now
going to fill in the details indicated by dots in the Figure. We do it under assumption
that the purpose is to compute the sum of consumed integers and print it out. Quite
naturally, the job of number () is to convert the integers into the form that can be
used in the computation, and the job of sum() is to do the actual computation.

class mySemantics extends SemanticsBase

{
//
// Number = Digits Space
//
void number ()
{...}%}
//
// Sum = Number (Plus Number)x*
//
void sum()
{...}%}
}

Figure 4. Outline of semantics class.



To do their job, semantic actions must have access to the result of parsing. Behind the
scenes, ParserBase creates for each call to parsing procedure a Phrase object — an
instance of class Phrase. This class is an internal class of ParserBase. Each Phrase
object represents the portion of input consumed by the specific procedure call — the
consumed ”phrase”. It contains the starting and ending position of the phrase in the
input text. It also contains the name of the procedure as a String, and a field of type
Object where the user can place a ”semantic value”.

ParserBase maintains a stack of Phrase objects representing the currently active
procedures. To describe the details, we are going to illustrate what happens when the
parser processes the input "47111+L117" (where Ll stands for blank space).

Figure 5 shows the stack at the moment when the parser processed the initial "4711011".
Each box represents one Phrase object. The string at the bottom of the box is the
consumed text. It is not represented by a String inside the object, only by the starting
and ending positions in the input.

The stack is the chain of Phrases starting with Input at the bottom. Phrase objects
on the right represent partial results.

lhs QO rhs (0) rhs (1)
Number Digits Space
Number = Digits Space —
47110 4711 u
Sum

Sum = Number (Plus Number)*

Input Space
Input = Space Sum !_ —

Figure 5. The stack after processing "4711L1", before call to number ().

The processing started by calling Input that consumed empty string by a call to
Space (). The Phrase object on the right is the result of that call. Input () called
then Sum() that immediately called Number (). This latter consumed "4711UL1" by
successful calls to Digits() and Space(), but did not return yet to its caller. The
results of Digits() and Space() appear on the right. This is the moment where
Number () calls its semantic action number ().

Through helper methods, number () can access the three Phrases on top of Figure 5.
They are obtained, respectively, as 1hs (), rhs(0), and rhs (1), which stand for ”left-
hand side”, ”right-hand side element 0”, and "right-hand side element 1”.

As indicated before, number () is expected to convert the text "4711" consumed by
Digits() to an integer 4711. As we shall see in a short while, the Phrase object for
Number that appears as the ”left-hand side” in Figure 5 will eventually become a part
of the "right-hand side” seen by the semantic action sum(). We can pass the integer
4711 to it as the semantic value of that object.



The text consumed by a Phrase is obtained by calling the method text () of that
Phrase. The text "4711" is thus obtained as rhs(0).text(). A semantic value is
inserted into a Phrase by means of the method put(...). The required action is thus
performed by a single statement:

1lhs() .put (Integer.valueOf (rhs(0) .text ()));

After calling its semantic action, Number () terminates by calling accept. This removes
the Number’s Phrase from the stack and attaches it as a partial result of Sum. The
Digits and Space objects are discarded. The resulting stack is shown in Figure 6.
Notice the semantic value 4711 in the Number’s Phrase.

Sum Number
Sum = Number (Plus Number)* — 4711
47110 47110
Input Space
Input = Space Sum !_ —

Figure 6. The stack after processing "4711L1" and return from Number ().

After receiving control back from Number (), Sum() enters its while statement that
will repeatedly call Sum_0(). Figure 7 shows the stack when the first call to Sum_0()
already consumed "+U17" by successful calls to Plus() and Number (). Notice the
semantic value 17 that was placed in the new Number object by semantic action
number ().

Sum_0 Plus Number
Sum_0 = Plus Number — 17
+J17U +UJ 17
Sum Number
Sum = Number (Plus Number)* — 4711
47111 471104
Input Space
Input = Space Sum !_ —

Figure 7. The stack after processing "4711L+U17" before return from Sum_0().

After receiving control back from Number (), Sum_0() exits by calling acceptInner
that handles successful return from procedures for inner expressions. Inner expressions
return their partial results to the caller, so the results of Plus() and Number () are



attached to Sum and the object for Sum_0() is discarded. The resulting stack is shown
in Figure 8.

1lhs() rhs(0) rhs(1) rhs(2)
Sum Number Plus Number
Sum = Number (Plus Number) * — 4711 17
A711L+17 47110 +L 174
T
Input Space
Input = Space Sum !_ —

Figure 8. The stack after processing "4711L1+J17" before call to sum().

The next call to Sum_0() encounters the end of text and fails, thus terminating the
while statement, and Sum() proceeds to call its semantic action sum(). This latter
has access to the four objects on top of Figure 8 and can compute the sum of the two
semantic values appearing in rhs(0) and rhs(2).

We must remember, however, that in the general case there will be k¥ (Plus Number)
pairs consumed by k£ > 0 invocations of Sum_0. That means we shall in general have
n = 2k + 1 right-hand side elements numbered like this:

Number Plus Number ... Plus Number
rhs(0) rhs(1) rhs(2) rhs(n-2) rhs(n-1)

The number n is obtained by calling the helper method rhsSize (). The semantic
value of a Phrase is obtained by calling the method get () that returns an Object.
The required computation is thus done as follows:

int s = 0;

for (int i=0;i<rhsSize();i+=2)

s += (Integer)rhs(i).get();
System.out.println(sum);

The complete class mySemantics that computes the sums is shown below.

class mySemantics extends SemanticsBase

void number ()
{ 1hs() .put (Integer.valueOf (rhs(0) .text())); }

[/ ===
// Sum = Number (Plus Number)x*
[/ ===
void sum()

{

int s = 0;

for (int i=0;i<rhsSize();i+=2)
s += (Integer)rhs(i).get();

System.out.println(sum);

}



5 Generating the parser

To construct a parser, you use the Mouse utility Generate that is invoked from
command line like this:

> java mouse.Generate -G myGrammar.txt -P myParser -S mySemantics

In this invocation, "myGrammar.txt” names the file containing the grammar,
"myParser” is name to be given to the generated parser, and "mySemantics” is name
of the semantics class. The utility creates a file myParser. java containing the parser.

Optionally, the utility may also generate a skeleton of the semantics class in a file
mySemantics. java, looking like Figure 4 with empty method bodies.

6 Backtracking

To illustrate backtracking, we add an alternative number format to our toy grammar:

Input = Space Sum !_ ;

Sum = Number (Plus Number)x* ;

Number = Digits? "." Digits Space // fraction
/ Digits Space ; // integer

Plus = "+" Space ;

Digits = [0-9]+ ;

Space =" Nk

The alternative format is a decimal fraction with or without digits before the decimal
point. (Notice that this is another feature usually delegated to a separate ”lexer”.)

The definition of Number does not have the LL(1) property: both alternatives may
start with Digits. Encountering a sequence of digits followed by a blank or plus,
Number () starts with the first alternative, and calls Digits() that consumes all the
digits and constructs a Phrase to represent them. Not finding the decimal point,
Number () discards the Phrase, backtracks to where it started, and tries the second
alternative that again calls Digits() to repeat the same job. This is the price for
circumventing the LL(1) requirement.

You can watch the backtracking activity by generating an instrumented version of
the parser. This is done by specifying an option to the Generate utility. The instru-
mented parser uses the same semantics class as the ordinary one. You execute the
instrumented parser using another Mouse utility, TestParser. It produces this result
for input ”123 + 4567”:

50 calls: 35 ok, 13 failed, 2 backtracked.
11 rescanned.
backtrack length: max 4, average 3.5.

Backtracking, rescan, reuse:

procedure ok fail back resc reuse totbk maxbk at

Digits 4 0 0 2 0 0 0

Number_0 0 0 2 0 0 7 4 After 123 + °
[0-9] 14 4 0 9 0 0 0



The first three lines tell that to process the input 7123 + 4567”, the parser executed
50 calls to parsing procedures, of which 35 succeeded, 13 failed, and two backtracked.
As expected, the parser backtracked 3 characters on the first Number and 4 on the
second, so the maximum backtrack length was 4 and the average backtrack length
was 3.5. You can also see that 11 of the procedure calls were "re-scans”: the same
procedure called again at the same input position.

The rest are detailed statistics for individual procedures that were involved in back-
tracking and rescanning. ”"Number_0” is the first alternative of Number. The heading
”totbk” stands for total backtrack length and "maxbk” for length of the longest back-
track; "at” tells where this longest backtrack occurred. The meaning of "reuse” will
be clear in the next section.

7 A mouse, not a pack rat

Optionally, Mouse can offer a small amount of memoization using the technique de-
scribed in [7]. This is done by attaching to each parsing procedure a cache that can
hold a small number (1-9) of the most recent Phrases created by the procedure. As
each Phrase contains a pointer to the input text, the procedure may find that it
already has the result, and directly return the Phrase.

This function can be exercised by the instrumented parser by specifying, via an option,
the size of the cache. Repeating the test from the preceding section with cache size 1
(that is, one most recent Phrase kept for each procedure) gives this result:

41 calls: 28 ok, 11 failed, 2 backtracked.
0 rescanned, 2 reused.
backtrack length: max 4, average 3.5.

Backtracking, rescan, reuse:

procedure ok fail back resc reuse totbk maxbk at
Digits 4 0 0 0 2 0 0
Number_0 0 0 2 0 0 7 4 After 123 + °

It shows that the parser reused the cached result of Digits on two occasions, thus
eliminating the unnecessary rescanning by [0-9].

If you decide you want memoization, you can generate a version of the parser that
allows it, without the instrumentation overhead. When deciding whether you want
memoization or not, you should consider the fact that it introduces some overhead.
It may cost more in performance than some moderate rescanning.



8 Error handling

8.1 Diagnostics

A non-backtracking parser stops after failing to find an expected character in the
input text, and this failure is reported as the syntax error. A backtracking parser may
instead backtrack and fail several times. It terminates and reports failure when no
more alternatives are left. The strategy used by Mouse is to report only the failure
that occurred farthest down in the input. If several different attempts failed at the
same point, all such failures are reported.

This is implemented so that information about such ”farthest failure(s)” is collected
in the Phrase objects constructed by parsing procedures. Even a failing procedure
returns a Phrase object to its caller, with information that it failed and why. The
caller synthesizes new failure information from the received Phrases and inserts it in
its own Phrase.

A syntax error causes the parsing procedures to fail and backtrack to the start of input.
This leaves the top procedure with its Phrase containing the error information; it is
used to construct the final error message.

The following is an example of such message produced for input "4711 # 17" by the
parser from Sections 3-4:

After ’4711 ’: expected ’ ’ or Plus or end of text

This message is the result of several failures caused by "#" appearing after "4711 ".
First, Space () failed to detect one more blank, which is reflected by expected > ’.
Then, Sum_0() failed to find Plus there. Finally, Input () failed to see end of the
text.

If you think the information about expected blank is uninteresting, it is possible to
write a semantic action for Space that erases its error information,

8.2 Recovery

Error recovery is about continuing after a syntax error. Compilers usually skip a faulty
statement and continue with next one. To see how this is done using Mouse, suppose
you want to modify the parser from Sections 3-4 so that it accepts a sequence of Sums
separated by semicolons, and skips faulty text up to the next semicolon. Such parser
could be defined as follows:

Input = Space (&_(Sum / Skip))+ !_ ;

Skip = (!End _)+ End;

Sum = Number (Plus Number)* End {sum} ~{error} ;
Number = Digits Space {number} ;

Plus = "+" Space ;

Digits = [0-9]+ ;

Space =" Nk

End = ";" Space / !_ ;



If Sum in the sub-expression (Sum / Skip) fails, Skip is invoked to skip everything
up to the next semicolon or end of input. Note that this grammar uses twice the
standard PEG idiom for "repeat A until B”, namely ” (!B A)+ B”.

The action name {error} preceded by a tilde at the end of Sum identifies a semantic
action error () to be called if Sum fails. (Otherwise semantic actions are called only
upon success.) The action has access to the Phrase object that represents the failed
Sum and contains information about the cause of the failure. The function of error
is to print out that information before it is superseded by later failures. This can be
coded as follows:

void error()
{
System.out.println(lhs () .errMsg());

1lhs() .errClear();

The helper method errMsg() constructs a printable message from the error informa-
tion contained in a Phrase. The helper method errClear () removes that information
to make sure it will not be issued again.
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