# From EBNF to PEG 

Roman R. Redziejowski

# Concurrency, Specification and Programming Berlin 2012 

## EBNF: Extended Backus-Naur Form

A way to define grammar.

## EBNF: Extended Backus-Naur Form

A way to define grammar.

$$
\begin{array}{ll}
\text { Literal } & =\text { Decimal | Binary } \\
\text { Decimal } & =[0-9]^{+} " . "[0-9]^{*} \\
\text { Binary } & =[01]^{+} \text {"B" }
\end{array}
$$

## Recursive-descent parsing

Parsing procedure for each equation and each terminal.

$$
\begin{aligned}
\text { Literal } & =\text { Decimal } \mid \text { Binary } \\
\text { Decimal } & =[0-9]^{+} \text {"." }[0-9]^{*} \\
\text { Binary } & =[01]^{+} " B "
\end{aligned}
$$

Literal calls Decimal or Binary.
Decimal calls repeatedly [0-9], then ".", then repeatedly [0-9]. Binary calls repeatedly [01], then " B ".

## Recursive-descent parsing

Parsing procedure for each equation and each terminal.

$$
\begin{aligned}
\text { Literal } & =\text { Decimal } \mid \text { Binary } \\
\text { Decimal } & =[0-9]^{+} \text {"." }[0-9]^{*} \\
\text { Binary } & =[01]^{+} " \mathrm{~B} "
\end{aligned}
$$

Literal calls Decimal or Binary.
Decimal calls repeatedly [0-9], then ".", then repeatedly [0-9]. Binary calls repeatedly [01], then " B ".

Problem: Decimal and Binary may start with any number of 0's and 1's.
Literal cannot choose which procedure to call
by looking at any fixed distance ahead.

## Solution: Backtracking

```
Literal = Decimal | Binary
Decimal \(=[0-9]^{+}\)"." [0-9]*
Binary \(=[01]^{+}\)"B"
    101B
```


## Solution: Backtracking

$$
\begin{aligned}
\text { Literal } & =\text { Decimal | Binary } \\
\text { Decimal } & =[0-9]^{+} " . "[0-9]^{*} \\
\text { Binary } & =[01]^{+} \text {"B" } \\
& 101 \mathrm{~B}
\end{aligned}
$$

Literal

## Solution: Backtracking

$$
\begin{aligned}
\text { Literal } & =\text { Decimal | Binary } \\
\text { Decimal } & =[0-9]^{+} \text {"." }[0-9]^{*} \\
\text { Binary } & =[01]^{+} \text {"B" } \\
& 101 \mathrm{~B} \\
& \wedge
\end{aligned}
$$

Literal $\rightarrow$ Decimal

## Solution: Backtracking

```
Literal = Decimal | Binary
Decimal \(=[0-9]^{+}\)"." [0-9]*
Binary = [01] \({ }^{+}\)"B"
    101B
```

Literal $\rightarrow$ Decimal $\rightarrow[0-9]$

## Solution: Backtracking

$$
\begin{aligned}
\text { Literal } & =\text { Decimal } \mid \text { Binary } \\
\text { Decimal } & =[0-9]^{+} \text {"." }[0-9]^{*} \\
\text { Binary } & =[01]^{+} \text {"B" } \\
& 101 \mathrm{~B}
\end{aligned}
$$

Literal $\rightarrow$ Decimal $\rightarrow[0-9]$ : advance 3 times

## Solution: Backtracking

$$
\begin{aligned}
\text { Literal } & =\text { Decimal } \mid \text { Binary } \\
\text { Decimal } & =[0-9]^{+} \text {"." }[0-9]^{*} \\
\text { Binary } & =[01]^{+} \text {"B" } \\
& 101 \mathrm{~B}
\end{aligned}
$$

Literal $\rightarrow$ Decimal $\rightarrow$ "."

## Solution: Backtracking

```
Literal = Decimal | Binary
Decimal = [0-9]+ "." [0-9]*
Binary = [01]+ "B"
    101B
```

Literal $\rightarrow$ Decimal $\rightarrow$ "." : fail, backtrack

## Solution: Backtracking

$$
\begin{aligned}
\text { Literal } & =\text { Decimal | Binary } \\
\text { Decimal } & =[0-9]^{+} " . "[0-9]^{*} \\
\text { Binary } & =[01]^{+} \text {"B" } \\
& 101 \mathrm{~B}
\end{aligned}
$$

Literal

## Solution: Backtracking

$$
\begin{aligned}
\text { Literal } & =\text { Decimal | Binary } \\
\text { Decimal } & =[0-9]^{+} " . "[0-9]^{*} \\
\text { Binary } & =[01]^{+} " \mathrm{~B} " \\
& 101 \mathrm{~B}
\end{aligned}
$$

Literal $\rightarrow$ Binary

## Solution: Backtracking

```
Literal = Decimal | Binary
Decimal \(=[0-9]^{+}\)"." [0-9]*
Binary \(=[01]^{+}\)"B"
    101B
```

Literal $\rightarrow$ Binary $\rightarrow[01]$

## Solution: Backtracking

$$
\begin{aligned}
\text { Literal } & =\text { Decimal } \mid \text { Binary } \\
\text { Decimal } & =[0-9]^{+} \text {"." }[0-9]^{*} \\
\text { Binary } & =[01]^{+} \text {"B" } \\
& 101 \mathrm{~B}
\end{aligned}
$$

Literal $\rightarrow$ Binary $\rightarrow[01]$ : advance 3 times

## Solution: Backtracking

$$
\begin{aligned}
\text { Literal } & =\text { Decimal } \mid \text { Binary } \\
\text { Decimal } & =[0-9]^{+} \text {"." }[0-9]^{*} \\
\text { Binary } & =[01]^{+} \text {"B" } \\
& 101 \mathrm{~B}
\end{aligned}
$$

Literal $\rightarrow$ Binary $\rightarrow$ "B"

## Solution: Backtracking

$$
\begin{aligned}
\text { Literal } & =\text { Decimal } \mid \text { Binary } \\
\text { Decimal } & =[0-9]^{+} \text {"." }[0-9]^{*} \\
\text { Binary } & =[01]^{+} \text {"B" } \\
& 101 \mathrm{~B}
\end{aligned}
$$

Literal $\rightarrow$ Binary $\rightarrow$ "B" : advance, return

## Solution: Backtracking

$$
\begin{array}{ll}
\text { Literal } & =\text { Decimal } \mid \text { Binary } \\
\text { Decimal } & =[0-9]^{+} " . "[0-9]^{*} \\
\text { Binary } & =[01]^{+} \text {"B" }
\end{array}
$$

## Limited backtracking

Backtracking solves the problem, but may take exponential time.

## Limited backtracking

Backtracking solves the problem, but may take exponential time.

Solution: limited backtracking.
Never go back after one alternative succeeded.

## Limited backtracking

Backtracking solves the problem, but may take exponential time.
Solution: limited backtracking.
Never go back after one alternative succeeded.

- 1961 Brooker \& Morris - Altas Compiler Compiler
- 1965 McClure - TransMoGrifier (TMG)
- 1972 Aho \& Ullman - Top-Down Parsing Language (TDPL)
- 2004 Ford - Parsing Expression Grammar (PEG)


## Limited backtracking

Backtracking solves the problem, but may take exponential time.
Solution: limited backtracking.
Never go back after one alternative succeeded.

- 1961 Brooker \& Morris - Altas Compiler Compiler
- 1965 McClure - TransMoGrifier (TMG)
- 1972 Aho \& Ullman - Top-Down Parsing Language (TDPL)
- 2004 Ford - Parsing Expression Grammar (PEG)

It can work in linear time.

Looks exactly like EBNF:

$$
\begin{array}{ll}
\text { Literal } & =\text { Decimal / Binary } \\
\text { Decimal } & =[0-9]^{+} " . "[0-9]^{*} \\
\text { Binary } & =[01]^{+} " \mathrm{~B} "
\end{array}
$$

Looks exactly like EBNF:

$$
\begin{aligned}
& \text { Literal }=\text { Decimal / Binary } \\
& \text { Decimal }=[0-9]^{+} \text {"." }[0-9]^{*} \\
& \text { Binary }=[01]^{+} \text {"B" }
\end{aligned}
$$

Specification of a recursive-descent parser with limited backtracking, where " /" means an ordered no-return choice.

## EBNF:

$\begin{array}{lll}\text { A }=(\text { ("a" / "aa") "b" } & \text { \{ab, aab \} } & \{a b\} \\ A=(" a a " / \text { "a") "ab" } & \{\text { aaab, aab \} } & \{\text { aaab }\} \\ A=(" a " / \text { "b"?) "a" } & \{a a, b a, a\} & \{a a, b a\}\end{array}$

$$
\begin{array}{lll} 
& \text { EBNF: } & \text { PEG: } \\
A=(" a " / \text { "aa") "b" } & \{\text { ab, aab }\} & \{a b\} \\
A=(" a a " / \text { "a") "ab" } & \{\text { aaab, aab }\} & \{\text { aaab }\} \\
A=(" a " / \text { "b"?) "a" } & \{\text { aa, ba, } a\} & \{a a, b a\}
\end{array}
$$

Backtracking may examine input far ahead so result may depend on context in front.

## EBNF:

$$
\begin{aligned}
& \text { A = ("a" / "aa") "b" \{ab, aab\} \{ab\} } \\
& \text { A = ("aa" / "a") "ab" \{aaab, aab\} \{aaab\} } \\
& \text { A = ("a" / "b"?) "a" \{aa, ba, a\} \{aa, ba\} }
\end{aligned}
$$

Backtracking may examine input far ahead so result may depend on context in front.

$$
\mathrm{A}=\text { "a" A "a" / "aa" EBNF: } \mathrm{a}^{2 n} \quad \text { PEG: } \mathrm{a}^{2 n}
$$

## Sometimes PEG is EBNF

In this case PEG = EBNF:

$$
\begin{array}{ll}
\text { Literal } & =\text { Decimal / Binary } \\
\text { Decimal } & =[0-9]^{+} \text {"." }[0-9]^{*} \\
\text { Binary } & =[01]^{+} " \mathrm{~B} "
\end{array}
$$

## Sometimes PEG is EBNF

In this case PEG = EBNF:

$$
\begin{array}{ll}
\text { Literal } & =\text { Decimal / Binary } \\
\text { Decimal } & =[0-9]^{+} " . "[0-9]^{*} \\
\text { Binary } & =[01]^{+} " \mathrm{~B} "
\end{array}
$$

When does it happen?

## When PEG = EBNF?

Sérgio Queiroz de Medeiros
Correspondência entre PEGs e Classes
de Gramáticas Livres de Contexto.
Ph.D. Thesis
Pontifícia Universidade Católica
do Rio deJaneiro (2010).

## When PEG = EBNF?

Sérgio Queiroz de Medeiros
Correspondência entre PEGs e Classes
de Gramáticas Livres de Contexto.
Ph.D. Thesis
Pontifícia Universidade Católica
do Rio deJaneiro (2010).

If EBNF has LL(1) property then PEG = EBNF

## When PEG = EBNF?

But this is not $\operatorname{LL}(1)$ :

$$
\begin{array}{ll}
\text { Literal } & =\text { Decimal / Binary } \\
\text { Decimal } & =[0-9]^{+} \text {"." }[0-9]^{*} \\
\text { Binary } & =[01]^{+} \text {"B" }
\end{array}
$$

## When PEG = EBNF?

But this is not LL(1):

$$
\begin{array}{ll}
\text { Literal } & =\text { Decimal / Binary } \\
\text { Decimal } & =[0-9]^{+} \text {"." }[0-9]^{*} \\
\text { Binary } & =[01]^{+} \text {"B" }
\end{array}
$$

Which means PEG = EBNF for a wider class.

## When PEG = EBNF?

But this is not LL(1):

$$
\begin{array}{ll}
\text { Literal } & =\text { Decimal / Binary } \\
\text { Decimal } & =[0-9]^{+} \text {"." }[0-9]^{*} \\
\text { Binary } & =[01]^{+} \text {"B" }
\end{array}
$$

Which means PEG = EBNF for a wider class.
Let us find more about it.

## Simple grammar

Alphabet $\Sigma$ (the "terminals").
Set $N$ of names (the "nonterminals").
For each $A \in N$ one rule of the form:

- $A=e_{1} e_{2} \quad$ (Sequence) or
- $A=e_{1} \mid e_{2} \quad$ (Choice)
where $e_{1}, e_{2} \in N \cup \Sigma \cup\{\varepsilon\}$.
Start symbol $S \in A$.
"Syntax expressions": $\mathbb{E}=N \cup \Sigma \cup\{\varepsilon\}$.


## Simple grammar

Alphabet $\Sigma$ (the "terminals").
Set $N$ of names (the "nonterminals").
For each $A \in N$ one rule of the form:

- $A=e_{1} e_{2} \quad$ (Sequence) or
- $A=e_{1} \mid e_{2} \quad$ (Choice)
where $e_{1}, e_{2} \in N \cup \Sigma \cup\{\varepsilon\}$.
Start symbol $S \in A$.
"Syntax expressions": $\mathbb{E}=N \cup \Sigma \cup\{\varepsilon\}$.

Will consider two interpretations: EBNF and PEG.

## EBNF interpretation

$\mathcal{L}(e)$ - language of expression $e \in \mathbb{E}$.

- $\mathcal{L}(\varepsilon)=\{\varepsilon\}$
- $\mathcal{L}(a)=\{a\}$ for $a \in \Sigma$
- $\mathcal{L}(A)=\mathcal{L}\left(e_{1}\right) \mathcal{L}\left(e_{2}\right)$ for $A=e_{1} e_{2}$
- $\mathcal{L}(A)=\mathcal{L}\left(e_{1}\right) \cup \mathcal{L}\left(e_{2}\right)$ for $A=e_{1} \mid e_{2}$

Language defined by the grammar: $\mathcal{L}(S)$.

Relation $\stackrel{\text { BNF }}{\sim} \subseteq \mathbb{E} \times \Sigma^{*} \times \Sigma^{*}$, written $[e] x \stackrel{\text { BNF }}{\sim} y$.
$[e] x y \stackrel{\text { BNF }}{\sim} y$ means " $x y$ has prefix $x \in \mathcal{L}(e)$ ".
Or: parsing procedure for $e$, applied to $x y$ consumes $x$ ".
$w \in \mathcal{L}(S) \Leftrightarrow[S] w \$ \stackrel{\text { ENF }}{\sim} \$$
where $\$$ is "end of text" marker.
$[e] x \stackrel{\text { 歫 }}{\sim} y$ holds if and only if
it can be proved using these inference rules：

$$
\begin{aligned}
& \overline{[\varepsilon] x \stackrel{\text { BNF }}{\sim} x \quad[a] a x \stackrel{\text { BNF }}{\sim} x} \\
& A=e_{1} e_{2} \quad\left[e_{1}\right] x y z \stackrel{\text { BNF }}{\sim} y z \quad\left[e_{2}\right] y z \stackrel{\text { BNF }}{\sim} z \\
& {[A] x y z \stackrel{\text { NNF }}{\sim} z} \\
& \frac{A=e_{1} \mid e_{2}\left[e_{1}\right] x y \stackrel{\text { 侖 }}{M} y}{[A] x y \stackrel{\text { BNF }}{M} y} \\
& \frac{A=e_{1} \mid e_{2}\left[e_{2}\right] x y \stackrel{\text { BNF }}{\sim} y}{[A] x y \stackrel{\text { BNF }}{\sim} y}
\end{aligned}
$$

## Example of proof

Grammar：$S=a X, \quad X=S \mid b \quad$ Proof of $a a b \in \mathcal{L}(S)$

$$
\begin{aligned}
& \text { [b] b\$ } \stackrel{\text { 步 }}{\sim} \text { \$ } \\
& X=S \mid b \quad[b] b \$ \stackrel{\text { DNF }}{\sim} \$ \\
& {[\mathrm{a}] \mathrm{ab} \$ \stackrel{\text { 步 }}{\leadsto} \mathrm{b} \$} \\
& {[\mathrm{X}] \mathrm{b} \$ \stackrel{\text { BNF }}{\leadsto} \$} \\
& S=a X \quad[a] a b \$ \stackrel{\text { BNF }}{\sim} b \$ \quad[X] b \$ \stackrel{\text { BNF }}{\sim} \$ \\
& {[\mathrm{~S}] \mathrm{ab} \$ \stackrel{\text { BNF }}{\sim} \$}
\end{aligned}
$$

$$
\begin{aligned}
& S=a X \quad[a] \operatorname{abb} \$ \stackrel{\text { BNF }}{\sim} a b \$ \quad[X] a b \$ \stackrel{\text { BNF }}{\sim} \$ \\
& {[\mathrm{~S}] \mathrm{aab} \$ \stackrel{\text { BNF }}{\sim} \$}
\end{aligned}
$$

## PEG interpretation

Elements of $\mathbb{E}$ are parsing procedures that consume input or return "failure".

- $\varepsilon$ returns success without consuming input.
- a consumes a if input starts with $a$. Otherwise returns failure.
- $A=e_{1} e_{2}$ calls $e_{1}$ then $e_{2}$. If any of them failed, backtracks and returns failure.
- $A=e_{1} \mid e_{2}$ calls $e_{1}$.

If $e_{1}$ succeeded, returns success.
If $e_{1}$ failed, calls $e_{2}$ and returns its result.

Relation $\stackrel{\text { PEG }}{\sim} \subseteq \mathbb{E} \times \Sigma^{*} \times\left(\Sigma^{*} \cup\right.$ fail $)$, written $[e] x \xrightarrow{\text { PEG }} y$.

- [e] $x y \stackrel{\text { PEG }}{\leadsto} y$ means "e consumes prefix $x$ of $x y$ ".
- $[e] x \xrightarrow{\text { PEG }}$ fail means " $e$ applied to $x$ returns failure".
$w$ accepted by the grammar iff $[S] w{ }^{\text {PEG }} \underset{\sim}{\mathrm{PG}} \$$.
[e] $x \stackrel{\text { PEG }}{\sim} Y$ holds if and only if
it can be proved using these inference rules:

$$
\begin{aligned}
& A=e_{1} e_{2} \quad\left[e_{1}\right] x y z \stackrel{\text { PEG }}{\sim} y z \quad\left[e_{2}\right] y z \stackrel{\text { PEG }}{\sim} Z \\
& {[A] x y z \stackrel{\text { PEG }}{\sim} Z}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{A=e_{1} \mid e_{2}\left[e_{1}\right] x \stackrel{\text { PEG }}{\sim} \text { fail }\left[e_{2}\right] x y \stackrel{\text { PEG }}{\sim} Y}{[A] x y \stackrel{\text { PEG }}{\sim} Y}
\end{aligned}
$$

where $Y$ is $y$ or fail and $Z$ is $z$ or fail .

## When PEG = EBNF?

By induction on the height of proof trees for $[S] w \$ \stackrel{\text { PEG }}{\sim} \$$ and $[S] w \$ \stackrel{\text { BNF }}{\rightsquigarrow} \$$ :

- $[S] w \$ \stackrel{\text { PEG }}{\ngtr} \$ \Rightarrow[S] w \$ \stackrel{\text { BNF }}{\rightsquigarrow} \$$. (Medeiros)


## When PEG = EBNF?

By induction on the height of proof trees for $[S] w \$ \stackrel{\text { PEG }}{\sim} \$$ and $[S] w \$ \stackrel{\text { BNF }}{\sim} \$$ :

- $[S] w \$ \stackrel{\text { PEG }}{\sim} \$ \Rightarrow[S] w \$ \stackrel{\text { BNF }}{\rightsquigarrow} \$$. (Medeiros)
- [S] $w \$ \stackrel{\text { BNF }}{\sim} \$ \Rightarrow[S] w \$ \stackrel{\text { PEG }}{\sim} \$$
if for every Choice $A=e_{1} \mid e_{2}$ holds
$\mathcal{L}\left(e_{1}\right) \cap \operatorname{Pref}\left(\mathcal{L}\left(e_{2}\right) \operatorname{Tail}(A)\right)=\varnothing$.


## When PEG = EBNF?

By induction on the height of proof trees for $[S] w \$ \stackrel{\text { PEG }}{\sim} \$$ and $[S] w \$ \stackrel{\text { NNF }}{\rightsquigarrow} \$$ :

- $[S] w \$ \stackrel{\text { PEG }}{\sim} \$ \Rightarrow[S] w \$ \stackrel{\text { BNF }}{\sim} \$$. (Medeiros)
- $[S] w \$ \stackrel{\text { BNF }}{\rightsquigarrow} \$ \Rightarrow[S] w \$ \stackrel{\text { PEG }}{\sim} \$$
if for every Choice $A=e_{1} \mid e_{2}$ holds
$\mathcal{L}\left(e_{1}\right) \cap \operatorname{Pref}\left(\mathcal{L}\left(e_{2}\right) \operatorname{Tail}(A)\right)=\varnothing$.
(Tail $(A)$ is any possible continuation after $A$ :
$y \in \operatorname{Tail}(A)$ iff proof tree of $[S] w \$ \stackrel{\text { BNF }}{\sim} \$$ for some $w$
contains partial result $[A] x y \$ \stackrel{\text { BNF }}{\rightsquigarrow} y \$$.)


## When PEG = EBNF?

Let us say that Choice $A=e_{1} \mid e_{2}$ is "safe" to mean $\mathcal{L}\left(e_{1}\right) \cap \operatorname{Pref}\left(\mathcal{L}\left(e_{2}\right) \operatorname{Tail}(A)\right)=\varnothing$.

## When PEG = EBNF?

Let us say that Choice $A=e_{1} \mid e_{2}$ is "safe" to mean $\mathcal{L}\left(e_{1}\right) \cap \operatorname{Pref}\left(\mathcal{L}\left(e_{2}\right) \operatorname{Tail}(A)\right)=\varnothing$.

The two interpretations are equivalent if every Choice in the grammar is safe.

## Notes

$\mathcal{L}\left(e_{1}\right) \cap \operatorname{Pref}\left(\mathcal{L}\left(e_{2}\right) \operatorname{Tail}(A)\right)=\varnothing$

## Notes

$\mathcal{L}\left(e_{1}\right) \cap \operatorname{Pref}\left(\mathcal{L}\left(e_{2}\right) \operatorname{Tail}(A)\right)=\varnothing$
Requires $\varepsilon \notin \mathcal{L}\left(e_{1}\right)$.

## Notes

## $\mathcal{L}\left(e_{1}\right) \cap \operatorname{Pref}\left(\mathcal{L}\left(e_{2}\right) \operatorname{Tail}(A)\right)=\varnothing$

Requires $\varepsilon \notin \mathcal{L}\left(e_{1}\right)$.
Depends on context.

## Notes

$$
\mathcal{L}\left(e_{1}\right) \cap \operatorname{Pref}\left(\mathcal{L}\left(e_{2}\right) \operatorname{Tail}(A)\right)=\varnothing
$$

Requires $\varepsilon \notin \mathcal{L}\left(e_{1}\right)$.
Depends on context.
Difficult to check: $\mathcal{L}\left(e_{1}\right), \mathcal{L}\left(e_{2}\right)$, and $\operatorname{Tail}(A)$ can be any context-free languages.
Intersection of context-free languages is in general undecidable.

## Notes

$\mathcal{L}\left(e_{1}\right) \cap \operatorname{Pref}\left(\mathcal{L}\left(e_{2}\right) \operatorname{Tail}(A)\right)=\varnothing$
Requires $\varepsilon \notin \mathcal{L}\left(e_{1}\right)$.
Depends on context.
Difficult to check: $\mathcal{L}\left(e_{1}\right), \mathcal{L}\left(e_{2}\right)$, and Tail $(A)$
can be any context-free languages.
Intersection of context-free languages is in general undecidable.

Can be "approximated" by stronger conditions.

## Approximation by first letters

Consider $A=e_{1} \mid e_{2}$.
$\operatorname{FiRST}\left(e_{1}\right), \operatorname{First}\left(e_{2}\right):$ sets of possible first letters of words in $\mathcal{L}\left(e_{1}\right)$ respectively $\mathcal{L}\left(e_{2}\right)$.

## Approximation by first letters

Consider $A=e_{1} \mid e_{2}$.
$\operatorname{First}\left(e_{1}\right), \operatorname{First}\left(e_{2}\right):$
sets of possible first letters of words in $\mathcal{L}\left(e_{1}\right)$ respectively $\mathcal{L}\left(e_{2}\right)$.

If $\mathcal{L}\left(e_{1}\right), \mathcal{L}\left(e_{2}\right)$, do not contain $\varepsilon$, $\operatorname{FIRST}\left(e_{1}\right) \cap \operatorname{FIRST}\left(e_{2}\right)=\varnothing$ implies $\mathcal{L}\left(e_{1}\right) \cap \operatorname{Pref}\left(\mathcal{L}\left(e_{2}\right) \operatorname{Tail}(A)\right)=\varnothing$.

## Approximation by first letters

Consider $A=e_{1} \mid e_{2}$.
$\operatorname{First}\left(e_{1}\right), \operatorname{FiRSt}\left(e_{2}\right):$
sets of possible first letters
of words in $\mathcal{L}\left(e_{1}\right)$ respectively $\mathcal{L}\left(e_{2}\right)$.
If $\mathcal{L}\left(e_{1}\right), \mathcal{L}\left(e_{2}\right)$, do not contain $\varepsilon$, $\operatorname{FIRST}\left(e_{1}\right) \cap \operatorname{FIRST}\left(e_{2}\right)=\varnothing$ implies $\mathcal{L}\left(e_{1}\right) \cap \operatorname{Pref}\left(\mathcal{L}\left(e_{2}\right) \operatorname{Tail}(A)\right)=\varnothing$.

This is $\mathrm{LL}(1)$ for grammar without $\varepsilon$.
Each choice in such grammar is safe. The two interpretations are equivalent.

## Approximation by first expressions

To go beyond LL(1), we shall look at first expressions rather than first letters.

## Computing FIRST

$$
\begin{aligned}
& S=X \mid Y \\
& X=Z \mid V \\
& Y=W X \\
& Z=a \mid b \\
& V=b \mid T \\
& W=d \mid U \\
& T=c V \\
& U=c W
\end{aligned}
$$



## Computing FIRST

$$
\begin{aligned}
& S=X \mid Y \\
& X=Z \mid V \\
& Y=W X \\
& Z=a \mid b \\
& V=b \mid T \\
& W=d \mid U \\
& T=c V \\
& U=c W
\end{aligned}
$$

$\operatorname{FIRSt}(X)=\{a, b, c\}$

## Computing FIRST

$$
\begin{aligned}
& S=X \mid Y \\
& X=Z \mid V \\
& Y=W X \\
& Z=a \mid b \\
& V=b \mid T \\
& W=d \mid U \\
& T=c V \\
& U=c W
\end{aligned}
$$

$\operatorname{First}(X)=\{a, b, c\}$
$\operatorname{First}(Y)=\{c, d\}$

## Computing FIRST

$$
\begin{aligned}
& S=X \mid Y \\
& X=Z \mid V \\
& Y=W X \\
& Z=a \mid b \\
& V=b \mid T \\
& W=d \mid U \\
& T=c V \\
& U=c W
\end{aligned}
$$

$\operatorname{FIRSt}(X)=\{a, b, c\}$
$\operatorname{First}(Y)=\{c, d\}$
$\{a, b, c\} \cap\{c, d\} \neq \varnothing: S=X \mid Y$ is not $\operatorname{LL}(1)$.
$S=X \mid Y$
$X=Z \mid V$
$Y=W X$
$Z=a \mid b$
$V=b \mid T$
$W=d \mid U$

$T=c V$
$U=c W$

## Truncated computation of FIRST

$$
\begin{aligned}
& S=X \mid Y \\
& X=Z \mid V \\
& Y=W X \\
& Z=a \mid b \\
& V=b \mid T \\
& W=d \mid U \\
& T=c V \\
& U=c W
\end{aligned}
$$



Each word in $\mathcal{L}(X)$ has a prefix in $\{a, b\} \cup \mathcal{L}(T)=a \cup c^{*} b$.

## Truncated computation of FIRST

$$
\begin{aligned}
& S=X \mid Y \\
& X=Z \mid V \\
& Y=W X \\
& Z=a \mid b \\
& V=b \mid T \\
& W=d \mid U \\
& T=c V \\
& U=c W
\end{aligned}
$$



Each word in $\mathcal{L}(X)$ has a prefix in $\{a, b\} \cup \mathcal{L}(T)=a \cup c^{*} b$. Each word in $\mathcal{L}(Y)$ has a prefix in $\{d\} \cup \mathcal{L}(U)=d^{*} b$.

## Approximation by first expressions

Each word in $\mathcal{L}(X)$ has a prefix in $a \cup c^{*} b$.
Each word in $\mathcal{L}(Y)$ has a prefix in $d^{*} b$.

$$
\begin{aligned}
& \mathcal{L}(X)=\left(a \cup c^{*} b\right)(\ldots) \\
& \mathcal{L}(Y)=\left(c^{*} d\right)(\ldots)
\end{aligned}
$$

## Approximation by first expressions

Each word in $\mathcal{L}(X)$ has a prefix in $a \cup c^{*} b$.
Each word in $\mathcal{L}(Y)$ has a prefix in $d^{*} b$.
$\mathcal{L}(X)=\left(a \cup c^{*} b\right)(\ldots)$
$\mathcal{L}(Y)=\left(c^{*} d\right)(\ldots)$
$\mathcal{L}(X) \cap \operatorname{Pref}(\mathcal{L}(Y) \operatorname{Tail}(S))$

$$
=\left(a \cup c^{*} b\right)(\ldots) \cap \operatorname{Pref}\left(\left(c^{*} d\right)(\ldots)(\ldots)\right)
$$

## Approximation by first expressions

Each word in $\mathcal{L}(X)$ has a prefix in $a \cup c^{*} b$.
Each word in $\mathcal{L}(Y)$ has a prefix in $d^{*} b$.
$\mathcal{L}(X)=\left(a \cup c^{*} b\right)(\ldots)$
$\mathcal{L}(Y)=\left(c^{*} d\right)(\ldots)$
$\mathcal{L}(X) \cap \operatorname{Pref}(\mathcal{L}(Y)$ Tail $(S))$

$$
=\left(a \cup c^{*} b\right)(\ldots) \cap \operatorname{Pref}\left(\left(c^{*} d\right)(\ldots)(\ldots)\right)
$$

No word in $a \cup c^{*} b$ is a prefix of word in $c^{*} d$ and vice-versa.

## Approximation by first expressions

Each word in $\mathcal{L}(X)$ has a prefix in $a \cup c^{*} b$.
Each word in $\mathcal{L}(Y)$ has a prefix in $d^{*} b$.
$\mathcal{L}(X)=\left(a \cup c^{*} b\right)(\ldots)$
$\mathcal{L}(Y)=\left(c^{*} d\right)(\ldots)$
$\mathcal{L}(X) \cap \operatorname{Pref}(\mathcal{L}(Y) \operatorname{Tail}(S))$ $=\left(a \cup c^{*} b\right)(\ldots) \cap \operatorname{Pref}\left(\left(c^{*} d\right)(\ldots)(\ldots)\right)$

No word in $a \cup c^{*} b$ is a prefix of word in $c^{*} d$ and vice-versa.
The intersection is empty: $S=X \mid Y$ is safe.

## Some terminology

$X$ starts with $a, b$, or $T$ :
" $X$ has $a, b$, and $T$ as possible first expressions".
$\{a, b, T\} \sqsubseteq X$

## Some terminology

$X$ starts with $a, b$, or $T$ :
" $X$ has $a, b$, and $T$ as possible first expressions".
$\{a, b, T\} \sqsubseteq X$

No word in $a, b$, or $T$ is a prefix of a word in $d$ or $U$ and vice-versa:
" $\{a, b, T\}$ and $\{d, U\}$ are exclusive".
$\{a, b, T\} \asymp\{d, U\}$

## One can easily see that...

If $\varepsilon \notin e_{1}$ and $\varepsilon \notin e_{2}$ and there exist $\mathrm{FIRST}_{1} \sqsubseteq e_{1}, \mathrm{FIRST}_{2} \sqsubseteq e_{2}$ such that $\mathrm{FIRST}_{1} \asymp \mathrm{FIRST}_{2}$ then $A=e_{1} \mid e_{2}$ is safe.

## When PEG = EBNF?

The two interpretations of an $\varepsilon$-free grammar are equivalent if for every Choice $A=e_{1} \mid e_{2}$, $e_{1}$ and $e_{2}$ have exclusive sets of first expressions.

## Final remarks

- (Good news) Grammar with $\varepsilon$ is easy to handle. This involves first expressions of $\operatorname{Tail}(A)$, that are obtained using the classical computation of FOLLOW.
- (Good news) Grammar with $\varepsilon$ is easy to handle. This involves first expressions of Tail $(A)$, that are obtained using the classical computation of FOLLOW.
- (Good news) The results for simple grammar are easily extended to full EBNF / PEG.


## Final remarks

- (Good news) Grammar with $\varepsilon$ is easy to handle. This involves first expressions of $\operatorname{Tail}(A)$, that are obtained using the classical computation of FOLLOW.
- (Good news) The results for simple grammar are easily extended to full EBNF / PEG.
- (Good news) The possible sets of first expressions are easily obtained in a mechanical way.


## Final remarks

- (Good news) Grammar with $\varepsilon$ is easy to handle. This involves first expressions of $\operatorname{Tail}(A)$, that are obtained using the classical computation of FOLLOW.
- (Good news) The results for simple grammar are easily extended to full EBNF / PEG.
- (Good news) The possible sets of first expressions are easily obtained in a mechanical way.
- (Bad news) Checking that they are exclusive is not easy: it is undecidable in general case (but we may hope first expressions are simple enough to be decidable.)


## Final final remark

## $S=(a a \mid a) b \quad$ (that is: $S=X b, X=a a \mid a$.

## Final final remark

$$
\begin{aligned}
& S=(\text { aa|a }) b \quad \text { (that is: } S=X b, X=\text { aa|a. }) \\
& \mathcal{L}\left(e_{1}\right) \cap \operatorname{Pref}\left(\mathcal{L}\left(e_{2}\right) \operatorname{Tail}(X)\right)=\text { aa } \cap \operatorname{Pref}(a b)=\varnothing .
\end{aligned}
$$

$$
\begin{aligned}
& S=(\text { aa|a }) b \quad \text { (that is: } S=X b, X=\text { aala. }) \\
& \mathcal{L}\left(e_{1}\right) \cap \operatorname{Pref}\left(\mathcal{L}\left(e_{2}\right) \operatorname{Tail}(X)\right)=\text { aa } \cap \operatorname{Pref}(a b)=\varnothing
\end{aligned}
$$

X is safe. Both interpretations accept $\{a \mathrm{ab}, \mathrm{ab}\}$.
$S=(a a \mid a) b \quad$ (that is: $S=X b, X=a a \mid a$.
$\mathcal{L}\left(e_{1}\right) \cap \operatorname{Pref}\left(\mathcal{L}\left(e_{2}\right) \operatorname{Tail}(X)\right)=$ aa $\cap \operatorname{Pref}(\mathrm{ab})=\varnothing$.
$X$ is safe. Both interpretations accept \{aab,ab\}.
Sets of first expressions in $\mathrm{X}:\{\mathrm{a}\}$, and $\{\mathrm{a}\}$. Not exclusive!
$S=(a a \mid a) b \quad$ (that is: $S=X b, X=a a \mid a$.
$\mathcal{L}\left(e_{1}\right) \cap \operatorname{Pref}\left(\mathcal{L}\left(e_{2}\right) \operatorname{Tail}(X)\right)=\mathrm{aa} \cap \operatorname{Pref}(\mathrm{ab})=\varnothing$.
$X$ is safe. Both interpretations accept \{aab,ab\}.
Sets of first expressions in X : $\{\mathrm{aa}\}$ and $\{\mathrm{a}\}$. Not exclusive!
There is more to squeeze out of $\mathcal{L}\left(e_{1}\right) \cap \operatorname{Pref}\left(\mathcal{L}\left(e_{2}\right) \operatorname{Tail}(A)\right)$.

## That's all

## Thanks for your attention!

