
Top-down parsing with backtrack

Roman Redziejowski

Concurrency, Specification and Programming
Rostock 2016

Roman Redziejowski Top-down parsing with backtrack

A long time ago

A long time ago ...

Perhaps in the middle of XX century ...

A group of ancient philosophers ...

Roman Redziejowski Top-down parsing with backtrack

A long time ago

Roman Redziejowski Top-down parsing with backtrack

A long time ago

... decided to create a Programming Language

to end all programming languages:

ALGOL!

Roman Redziejowski Top-down parsing with backtrack

A long time ago

Syntax definition of Algol 60

<Expr> ::= <Term> | <Expr> <AddOp> <Term>
<Term> ::= <Factor> | <Term> <MultOp> <Factor>
<Factor> ::= <Float> | <Integer> | (<Expr>)
<Integer> ::= <Digits>
<Float> ::= . <Digits> | <Digits> . <Digits>
<AddOp> ::= + | -
<MultOp> ::= * | /
<Digits> ::= <Digit> | <Digits> <Digit>
<Digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Roman Redziejowski Top-down parsing with backtrack

A long time ago

Syntax definition of Algol 60

<Expr> ::= <Term> | <Expr> <AddOp> <Term>
<Term> ::= <Factor> | <Term> <MultOp> <Factor>
<Factor> ::= <Float> | <Integer> | (<Expr>)
<Integer> ::= <Digits>
<Float> ::= . <Digits> | <Digits> . <Digits>
<AddOp> ::= + | -
<MultOp> ::= * | /
<Digits> ::= <Digit> | <Digits> <Digit>
<Digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Designed by

John Backus
Peter Naur

and called Backus-Naur Form (BNF).

Roman Redziejowski Top-down parsing with backtrack

EBNF: Extended Backus-Naur Form

Algol is dead, but BNF is much alive and got a facelift

Roman Redziejowski Top-down parsing with backtrack

EBNF: Extended Backus-Naur Form

Algol is dead, but BNF is much alive and got a facelift

Expr = Term (AddOp Term)*
Term = Factor (MultOp Factor)*
Factor = Float | Integer | "(" Expr ")"
Integer = Digits
Float = Digits? "." Digits
AddOp = [+-]
MultOp = [*/]
Digits = Digit+
Digit = [0-9]

Roman Redziejowski Top-down parsing with backtrack

EBNF: Extended Backus-Naur Form

Algol is dead, but BNF is much alive and got a facelift

Expr = Term (AddOp Term)*
Term = Factor (MultOp Factor)*
Factor = Float | Integer | "(" Expr ")"
Integer = Digits
Float = Digits? "." Digits
AddOp = [+-]
MultOp = [*/]
Digits = Digit+
Digit = [0-9]

Abbreviated notation

Roman Redziejowski Top-down parsing with backtrack

EBNF: Extended Backus-Naur Form

Algol is dead, but BNF is much alive and got a facelift

Expr = Term (AddOp Term)*
Term = Factor (MultOp Factor)*
Factor = Float | Integer | "(" Expr ")"
Integer = Digits
Float = Digits? "." Digits
AddOp = [+-]
MultOp = [*/]
Digits = Digit+
Digit = [0-9]

Abbreviated notation
Option instead of alternative

Roman Redziejowski Top-down parsing with backtrack

EBNF: Extended Backus-Naur Form

Algol is dead, but BNF is much alive and got a facelift

Expr = Term (AddOp Term)*
Term = Factor (MultOp Factor)*
Factor = Float | Integer | "(" Expr ")"
Integer = Digits
Float = Digits? "." Digits
AddOp = [+-]
MultOp = [*/]
Digits = Digit+
Digit = [0-9]

Abbreviated notation
Option instead of alternative
Repetition instead of recursion

Roman Redziejowski Top-down parsing with backtrack

EBNF: Extended Backus-Naur Form

You may have also seen this:

Expr = Term {AddOp Term}
Term = Factor {MultOp Factor}
Factor = Float | Integer | "(" Expr ")"
Integer = Digits
Float = [Digits] "." Digits
AddOp = "+" | "-"
MultOp = "*" | "/"
Digits = Digit{Digit}
Digit = one of 0 1 2 3 4 5 6 7 8 9

Roman Redziejowski Top-down parsing with backtrack

Parsing

Expr = Term (AddOp Term)*
Term = Factor (MultOp Factor)*
Factor = Float | Integer | "(" Expr ")"
Integer = Digits
Float = Digits? "." Digits
AddOp = [+-]
MultOp = [*/]
Digits = Digit+
Digit = [0-9]

5*(1.73/3+.2)

Roman Redziejowski Top-down parsing with backtrack

Parsing

Expr = Term (AddOp Term)*
Term = Factor (MultOp Factor)*
Factor = Float | Integer | "(" Expr ")"
Integer = Digits
Float = Digits? "." Digits
AddOp = [+-]
MultOp = [*/]
Digits = Digit+
Digit = [0-9]

5*(1.73/3+.2) How to parse this?

Roman Redziejowski Top-down parsing with backtrack

Parsing

Expr = Term (AddOp Term)*
Term = Factor (MultOp Factor)*
Factor = Float | Integer | "(" Expr ")"
Integer = Digits
Float = Digits? "." Digits
AddOp = [+-]
MultOp = [*/]
Digits = Digit+
Digit = [0-9]

5*(1.73/3+.2) How to parse this?

Peter Lucas:
For each syntactic unit write a procedure that "consumes" the unit.

Roman Redziejowski Top-down parsing with backtrack

Procedure for χ = α1 | α2 | . . . | αn

(From ancient papyrus attributed to P. Lucas)

Roman Redziejowski Top-down parsing with backtrack

Recursive descent

Expr = Term (AddOp Term)*
Term = Factor (MultOp Factor)*
Factor = Float | Integer | "(" Expr ")"
Integer = Digits
Float = Digits? "." Digits
AddOp = [+-]
MultOp = [*/]
Digits = Digit+
Digit = [0-9]

5*(1.73/3+.2)

Roman Redziejowski Top-down parsing with backtrack

Recursive descent

Expr = Term (AddOp Term)*
Term = Factor (MultOp Factor)*
Factor = Float | Integer | "(" Expr ")"
Integer = Digits
Float = Digits? "." Digits
AddOp = [+-]
MultOp = [*/]
Digits = Digit+
Digit = [0-9]

5*(1.73/3+.2)

Top-down parsing by recursive descent.

Roman Redziejowski Top-down parsing with backtrack

Recursive descent

Roman Redziejowski Top-down parsing with backtrack

Little problem

"Each metalinguistic variable must be distinguishable ...
... by the very first symbol of the string represented by the variable."

Roman Redziejowski Top-down parsing with backtrack

Little problem

"Each metalinguistic variable must be distinguishable ...
... by the very first symbol of the string represented by the variable."

The LL(1) property.

Roman Redziejowski Top-down parsing with backtrack

Another little problem

Left recursion:

A = A B | C

Infinite descent

Roman Redziejowski Top-down parsing with backtrack

Avoiding problems

Not LL(1): A = aB | aC

Roman Redziejowski Top-down parsing with backtrack

Avoiding problems

Not LL(1): A = aB | aC

Transform to A = a (B | C)

Roman Redziejowski Top-down parsing with backtrack

Avoiding problems

Not LL(1): A = aB | aC

Transform to A = a (B | C)

Left recursion: A = AB | C

Roman Redziejowski Top-down parsing with backtrack

Avoiding problems

Not LL(1): A = aB | aC

Transform to A = a (B | C)

Left recursion: A = AB | C

Transform to A = CB*

Roman Redziejowski Top-down parsing with backtrack

Manchester 1962

A monster: Manchester University Atlas
1 000 000 operations per second
1 000 000 words of addressable storage.

Roman Redziejowski Top-down parsing with backtrack

Manchester 1962

Brooker and Morris: Compiler Compiler

Roman Redziejowski Top-down parsing with backtrack

Manchester 1962

Brooker and Morris: Compiler Compiler

Took "phrase structure grammar" - very like EBNF.

Roman Redziejowski Top-down parsing with backtrack

Manchester 1962

Brooker and Morris: Compiler Compiler

Took "phrase structure grammar" - very like EBNF.

Constructed recursive-descent parser.

Roman Redziejowski Top-down parsing with backtrack

Manchester 1962

Brooker and Morris: Compiler Compiler

Took "phrase structure grammar" - very like EBNF.

Constructed recursive-descent parser.

Solution to LL(1) problem:
Just try everything. Atlas can do it!

Roman Redziejowski Top-down parsing with backtrack

Backtracking

Parsing procedure tries to "consume" its syntactic unit.
On failure: rewinds the input - backtracks .

Roman Redziejowski Top-down parsing with backtrack

Limited backtracking

Once αi succeeded, never try any of αi+1 . . . αn

Roman Redziejowski Top-down parsing with backtrack

Left-recursion?

Unfortunately, no medicine for left-recursion.

Roman Redziejowski Top-down parsing with backtrack

Atlas was only one in the crowd ...

Hopgood (1969) names four projects that use limited backtracking.

Roman Redziejowski Top-down parsing with backtrack

Atlas was only one in the crowd ...

Hopgood (1969) names four projects that use limited backtracking.

Another approach: LL(*). Uses a lookahead automaton (ANTLR).

Roman Redziejowski Top-down parsing with backtrack

Atlas was only one in the crowd ...

Hopgood (1969) names four projects that use limited backtracking.

Another approach: LL(*). Uses a lookahead automaton (ANTLR).

Some attempts to marry left-recursion and top-down.

Roman Redziejowski Top-down parsing with backtrack

Atlas was only one in the crowd ...

Hopgood (1969) names four projects that use limited backtracking.

Another approach: LL(*). Uses a lookahead automaton (ANTLR).

Some attempts to marry left-recursion and top-down.

Bottom-up parsing: LR, LALR (YACC).

Roman Redziejowski Top-down parsing with backtrack

Atlas was only one in the crowd ...

Hopgood (1969) names four projects that use limited backtracking.

Another approach: LL(*). Uses a lookahead automaton (ANTLR).

Some attempts to marry left-recursion and top-down.

Bottom-up parsing: LR, LALR (YACC).

Earley parsing.

Roman Redziejowski Top-down parsing with backtrack

Meanwhile in the US

1965: McClure from Texas Instruments.
TransMoGrifier (TMG). Rewrites syntax definition into a parser.

Roman Redziejowski Top-down parsing with backtrack

Meanwhile in the US

1965: McClure from Texas Instruments.
TransMoGrifier (TMG). Rewrites syntax definition into a parser.

1970: Ph.D. thesis of Alexander Birman.
Analyzes the grammar used by TMG.

Roman Redziejowski Top-down parsing with backtrack

Meanwhile in the US

1965: McClure from Texas Instruments.
TransMoGrifier (TMG). Rewrites syntax definition into a parser.

1970: Ph.D. thesis of Alexander Birman.
Analyzes the grammar used by TMG.

1972: Book by Alfred V. Aho and Jeffrey D. Ullman
(precursor of "Dragon Book").
A comprehensible account of Birman’s findings.

Roman Redziejowski Top-down parsing with backtrack

TDPL

TDPL (Top-Down Parsing Language) - a language to write top-down
parsers with limited backtracking.
Much like EBNF in the spirit of Lucas.

Roman Redziejowski Top-down parsing with backtrack

TDPL

TDPL (Top-Down Parsing Language) - a language to write top-down
parsers with limited backtracking.
Much like EBNF in the spirit of Lucas.

New construction: A[B,C].
Call A. If successful, continue to call B.
Otherwise backtrack and call C.
Here A performs lookahead - unknown in EBNF.

Roman Redziejowski Top-down parsing with backtrack

TDPL

TDPL (Top-Down Parsing Language) - a language to write top-down
parsers with limited backtracking.
Much like EBNF in the spirit of Lucas.

New construction: A[B,C].
Call A. If successful, continue to call B.
Otherwise backtrack and call C.
Here A performs lookahead - unknown in EBNF.

Can work in linear time.
But needs a lot of memory.
Too much for existing machines.

Roman Redziejowski Top-down parsing with backtrack

Fast forward 30 years

Roman Redziejowski Top-down parsing with backtrack

Packrat parsing

MIT 2002: M.Sc. thesis of Brian Ford uses the fact
that TDPL can be processed in linear time.

Roman Redziejowski Top-down parsing with backtrack

Packrat parsing

MIT 2002: M.Sc. thesis of Brian Ford uses the fact
that TDPL can be processed in linear time.

The trick is to save all results so they can be reused after backtrack.
The new fantastic computers of the day can do it.

Roman Redziejowski Top-down parsing with backtrack

Packrat parsing

MIT 2002: M.Sc. thesis of Brian Ford uses the fact
that TDPL can be processed in linear time.

The trick is to save all results so they can be reused after backtrack.
The new fantastic computers of the day can do it.

Process is called "packrat parsing".
Pack rat (neotoma cinerea) is a rodent that collects lots of
unnecessary things in its nest.
Also a person with such a compulsory behavior.

Roman Redziejowski Top-down parsing with backtrack

Packrat parsing

MIT 2002: M.Sc. thesis of Brian Ford uses the fact
that TDPL can be processed in linear time.

The trick is to save all results so they can be reused after backtrack.
The new fantastic computers of the day can do it.

Process is called "packrat parsing".
Pack rat (neotoma cinerea) is a rodent that collects lots of
unnecessary things in its nest.
Also a person with such a compulsory behavior.

"Memoization" of parsing procedures.

Roman Redziejowski Top-down parsing with backtrack

Packrat parsing

MIT 2002: M.Sc. thesis of Brian Ford uses the fact
that TDPL can be processed in linear time.

The trick is to save all results so they can be reused after backtrack.
The new fantastic computers of the day can do it.

Process is called "packrat parsing".
Pack rat (neotoma cinerea) is a rodent that collects lots of
unnecessary things in its nest.
Also a person with such a compulsory behavior.

"Memoization" of parsing procedures.

Pappy: written in Haskell
Generated packrat parsers written in Haskell.

Roman Redziejowski Top-down parsing with backtrack

PEG

2004: Ford announces a re-make of TDPL.
Calls it "Parsing Expression Grammar" (PEG).

Looks like EBNF:

Expr <- Term (AddOp Term)*
Term <- Factor (MultOp Factor)*
Factor <- Float / Integer / "(" Expr ")"
Integer <- Digits
Float <- Digits? "." Digits
AddOp <- [+-]
MultOp <- [*/]
Digits <- Digit+
Digit <- [0-9]

Roman Redziejowski Top-down parsing with backtrack

PEG

2004: Ford announces a re-make of TDPL.
Calls it "Parsing Expression Grammar" (PEG).

Looks like EBNF:

Expr <- Term (AddOp Term)*
Term <- Factor (MultOp Factor)*
Factor <- Float / Integer / "(" Expr ")"
Integer <- Digits
Float <- Digits? "." Digits
AddOp <- [+-]
MultOp <- [*/]
Digits <- Digit+
Digit <- [0-9]

- in reality a recursive-descent parser with limited backtracking.

All syntactic elements are Parsing Expressions:
recursive parsing procedures.

Roman Redziejowski Top-down parsing with backtrack

PEG

E1/ . . . /En Ordered choice: Apply expressions E1, . . . , En , in this order, to the text ahead, until one of
them succeeds and possibly consumes some text. Indicate success if one of expressions
succeeded. Otherwise do not consume any text and indicate failure.

E1 . . . En Sequence: Apply expressions E1, . . . , En , in this order, to consume consecutive portions
of the text ahead, as long as they succeed. Indicate success if all succeeded. Otherwise do
not consume any text and indicate failure.

&E And predicate: Indicate success if expression E matches the text ahead; otherwise indicate
failure. Do not consume any text.

!E Not predicate: Indicate failure if expression E matches the text ahead; otherwise indicate
success. Do not consume any text.

E+ One or more: Apply expression E repeatedly to match the text ahead, as long as it
succeeds. Consume the matched text (if any) and indicate success if there was at least one
match. Otherwise indicate failure.

E∗ Zero or more: Apply expression E repeatedly to match the text ahead, as long as it
succeeds. Consume the matched text (if any). Always indicate success.

E? Zero or one: If expression E matches the text ahead, consume it. Always indicate success.

[s] Character class: If the character ahead appears in the string s, consume it and indicate
success. Otherwise indicate failure.

[c1-c2] Character range: If the character ahead is one from the range c1 through c2, consume it
and indicate success. Otherwise indicate failure.

"s" String: If the text ahead is the string s, consume it and indicate success. Otherwise indicate
failure.

_ Any character: If there is a character ahead, consume it and indicate success. Otherwise
(that is, at the end of input) indicate failure.

Roman Redziejowski Top-down parsing with backtrack

Syntactic predicates - lookahead

&E: Succeed if text ahead conforms to E.

!E: Succeed if text ahead does not conform to E.

In each case do not consume any input.

Roman Redziejowski Top-down parsing with backtrack

Syntactic predicates - lookahead

&E: Succeed if text ahead conforms to E.

!E: Succeed if text ahead does not conform to E.

In each case do not consume any input.

Can define:

!_ End of input

<!= "<" not followed by "="

(!a_)∗a String of anything up to "a"

(a&a)∗ Consumes string of a’s except the last one

Roman Redziejowski Top-down parsing with backtrack

Syntactic predicates - lookahead

&E: Succeed if text ahead conforms to E.

!E: Succeed if text ahead does not conform to E.

In each case do not consume any input.

Can define:

!_ End of input

<!= "<" not followed by "="

(!a_)∗a String of anything up to "a"

(a&a)∗ Consumes string of a’s except the last one

Can define anbncn.

Roman Redziejowski Top-down parsing with backtrack

Syntactic predicates - lookahead

&E: Succeed if text ahead conforms to E.

!E: Succeed if text ahead does not conform to E.

In each case do not consume any input.

Can define:

!_ End of input

<!= "<" not followed by "="

(!a_)∗a String of anything up to "a"

(a&a)∗ Consumes string of a’s except the last one

Can define anbncn.

Can be replaced by backtracking.

Roman Redziejowski Top-down parsing with backtrack

Integrated lexing

Expr = Term (AddOp Term)*
Term = Factor (MultOp Factor)*
Factor = Float | Integer | Lparen Expr Rparen
Integer = Digits
Float = Digits? "." Digits
AddOp = [+-]
MultOp = [*/]
Lparen = "("
Rparen = ")"
Digits = Digit+
Digit = [0-9]

Roman Redziejowski Top-down parsing with backtrack

Integrated lexing

Expr = Term (AddOp Term)*
Term = Factor (MultOp Factor)*
Factor = Float | Integer | Lparen Expr Rparen
Integer = Digits Space
Float = Digits? "." Digits Space
AddOp = [+-] Space
MultOp = [*/] Space
Lparen = "(" Space
Rparen = ")" Space
Digits = Digit+
Digit = [0-9]
Space = (" " | "{"(!"}"_)*"}")*

Roman Redziejowski Top-down parsing with backtrack

Integrated lexing

Expr = Term (AddOp Term)*
Term = Factor (MultOp Factor)*
Factor = Float | Integer | "(" Expr ")"
Integer = Digits Space
Float = Digits? "." Digits Space
AddOp = [+-] Space
MultOp = [*/] Space
Lparen = "(" Space
Rparen = ")" Space
Digits = Digit+
Digit = [0-9]
Space = (" " | "{"(!"}"_)*"}")*

Keyword = ("one"|"two") !Letter
Identifier = !Keyword Letter+
Letter = [a-z]

Roman Redziejowski Top-down parsing with backtrack

PEG fans

Ultimate beauty: syntax and complete parser in one!

Roman Redziejowski Top-down parsing with backtrack

PEG fans

Ultimate beauty: syntax and complete parser in one!

PEG fan club:

Discussion forum

Publication list.

Roman Redziejowski Top-down parsing with backtrack

Rats! and Mouse

2004: Rats! by Robert Grimm.
Parser generator.
Generates packrat parsers from PEG.
Both generator and parser in Java.

Roman Redziejowski Top-down parsing with backtrack

Rats! and Mouse

2004: Rats! by Robert Grimm.
Parser generator.
Generates packrat parsers from PEG.
Both generator and parser in Java.

2006: Mouse.
My program in Java to transcribe Parsing Expressions
into parsing procedures in Java. Not a pack rat.

Roman Redziejowski Top-down parsing with backtrack

Measuring performance

Wrote PEG for Java 1.6 and generated parser for it.
Applied the parser to 80 Java files of sizes from 0.1 to 476 kBytes.
Counted calls to parsing procedures.

Roman Redziejowski Top-down parsing with backtrack

Measuring performance

Wrote PEG for Java 1.6 and generated parser for it.
Applied the parser to 80 Java files of sizes from 0.1 to 476 kBytes.
Counted calls to parsing procedures.

5 10 15 20 25 30 35 40
calls / byte

0

10

20

30

40

number of files

Roman Redziejowski Top-down parsing with backtrack

Measuring performance

Wrote PEG for Java 1.6 and generated parser for it.
Applied the parser to 80 Java files of sizes from 0.1 to 476 kBytes.
Counted calls to parsing procedures.

5 10 15 20 25 30 35 40
calls / byte

0

10

20

30

40

number of files

Time proportional to file size!

Roman Redziejowski Top-down parsing with backtrack

Measuring performance

Counted calls repeated due to backtracking.
Found them to be 16% of the total.

Roman Redziejowski Top-down parsing with backtrack

Measuring performance

Counted calls repeated due to backtracking.
Found them to be 16% of the total.

Tried minimal memoization.

0 1 2
saved

0M

20M

40M

60M

80M

calls

repeated

Roman Redziejowski Top-down parsing with backtrack

Measuring performance

Counted calls repeated due to backtracking.
Found them to be 16% of the total.

Tried minimal memoization.

0 1 2
saved

0M

20M

40M

60M

80M

calls

repeated

Not much use of saving more than 1 result.
Down with pack rats!

Roman Redziejowski Top-down parsing with backtrack

Mouse is not dead

Mouse is, by the way, alive and thrives in its hole on SourceForge.

You can feed it cheese ... well ... grammar & semantic procedures
to create a compiler.

Welcome!

Roman Redziejowski Top-down parsing with backtrack

Is my PEG correct?

I wrote my PEG for Java as if it was EBNF.
It accepts 10 000 source files.

Roman Redziejowski Top-down parsing with backtrack

Is my PEG correct?

I wrote my PEG for Java as if it was EBNF.
It accepts 10 000 source files.

So what?
How do I know it is correct?

Roman Redziejowski Top-down parsing with backtrack

PEG is not EBNF

LEBNF (a|aa) = {a,aa} LPEG(a|aa) = {a}

LEBNF (aa|a)a = {aaa,aa} LPEG(aa|a)a = {aaa}

LEBNF (aa|a)b = {aab,ab} LPEG(aa|a)b = {aab,ab}

A = aAa|aa LEBNF (A) = even number of a’s LPEG(A) = 2n a’s

Roman Redziejowski Top-down parsing with backtrack

Trying to define the language

S(e1)S(e3) ∪ (S(e2)S(e3)− L(e1)Σ
∗ − Pref(L(e1))) ⊆ S((e1/e2)e3)

⊆ L((e1/e2)e3) ⊆ L(e1)L(e3) ∪ (L(e2)L(e3)− S(e1)Σ
∗)

Roman Redziejowski Top-down parsing with backtrack

Rio de Janeiro 2010

Roman Redziejowski Top-down parsing with backtrack

Rio de Janeiro 2010

Ph.D. thesis of Sérgio Medeiros at Pontifícia Universidade Católica.

Roman Redziejowski Top-down parsing with backtrack

Rio de Janeiro 2010

Ph.D. thesis of Sérgio Medeiros at Pontifícia Universidade Católica.

Use relation PEG
 to define the meaning of PEG:

[e] xy PEG
 y Expression e consumes prefix x of string xy .

[e] xy PEG
 fail Expression e fails on string xy .

Relation holds if it can be proved using given set of inference rules.

Roman Redziejowski Top-down parsing with backtrack

PEG semantics

[e(A)] xy PEG
 Y

[A] xy PEG
 Y [ε] x PEG

 x

[a] ax PEG
 x

w 6= ax

[a] w PEG
 fail

[e] xy PEG
 y

[! e] xy PEG
 fail

[e] x PEG
 fail

[! e] x PEG
 x

[e1] xyz PEG
 yz [e2] yz PEG

 Z

[e1e2] xyz PEG
 Z

[e1] x PEG
 fail

[e1e2] x PEG
 fail

[e1] xy PEG
 y

[e1| e2] xy PEG
 y

[e1] xy PEG
 fail [e2] xy PEG

 Y

[e1| e2] xy PEG
 Y

Roman Redziejowski Top-down parsing with backtrack

Example of proof

X = aY
Y = b|X

Proof of [X] ab PEG
 ε

Roman Redziejowski Top-down parsing with backtrack

Natural semantics

- Simpler than Ford’s

- Proofs by induction on height of derivation tree

Roman Redziejowski Top-down parsing with backtrack

EBNF semantics

The meaning of EBNF can be similarly defined by relation BNF

where [e] xy BNF
 y means x conforms to syntax defined by e.

The inference rules are:

[e(A)] xy BNF
 Y

[A] xy BNF
 Y [ε] x BNF

 x [a] ax BNF
 x

[! e] x BNF
 x

[e1] xyz BNF
 yz [e2] yz BNF

 z

[e1e2] xyz BNF
 z

[e1] xy BNF
 y

[e1| e2] xy BNF
 y

[e2] xy BNF
 y

[e1| e2] xy BNF
 y

Roman Redziejowski Top-down parsing with backtrack

Two interpretations

A grammar that can be viewed

- either as PEG, using PEG
 and defining LPEG(e)

- or as EBNF, using BNF
 and defining LEBNF (e)

Roman Redziejowski Top-down parsing with backtrack

Basic results

LPEG(e) ⊆ LEBNF (e) for all e.

Roman Redziejowski Top-down parsing with backtrack

Basic results

LPEG(e) ⊆ LEBNF (e) for all e.

if the grammar is not left-recursive
and for all A = e1|e2 holds

LEBNF (e1)Σ
∗ ∩ LEBNF (e2)Tail(A) = ∅

then LPEG(e) = LEBNF (e) for all e.

Roman Redziejowski Top-down parsing with backtrack

Basic results

LPEG(e) ⊆ LEBNF (e) for all e.

if the grammar is not left-recursive
and for all A = e1|e2 holds

LEBNF (e1)Σ
∗ ∩ LEBNF (e2)Tail(A) = ∅

then LPEG(e) = LEBNF (e) for all e.

Tail(A): set of strings that can follow LEBNF (e2) in corect input.
Can be formally defined using natural semantics.

Roman Redziejowski Top-down parsing with backtrack

Checking the condition

A = e1|e2

LEBNF (e1)Σ
∗ ∩ LEBNF (e2)Tail(A) = ∅

Roman Redziejowski Top-down parsing with backtrack

Checking the condition

A = e1|e2

LEBNF (e1)Σ
∗ ∩ LEBNF (e2)Tail(A) = ∅

Special case: LL(1) - can be checked by classical methods.

Roman Redziejowski Top-down parsing with backtrack

Checking the condition

A = e1|e2

LEBNF (e1)Σ
∗ ∩ LEBNF (e2)Tail(A) = ∅

Special case: LL(1) - can be checked by classical methods.

No algorithm for general case.

Roman Redziejowski Top-down parsing with backtrack

Checking the condition

A = e1|e2

LEBNF (e1)Σ
∗ ∩ LEBNF (e2)Tail(A) = ∅

Special case: LL(1) - can be checked by classical methods.

No algorithm for general case.

But the condition can often be checked by inspection.

Roman Redziejowski Top-down parsing with backtrack

Checking the condition

A = e1|e2

LEBNF (e1)Σ
∗ ∩ LEBNF (e2)Tail(A) = ∅

Special case: LL(1) - can be checked by classical methods.

No algorithm for general case.

But the condition can often be checked by inspection.

Developed experimental tool, the PEG Analyzer, to assist it.
Presents for inspection the cases failing LL(1) test.

Roman Redziejowski Top-down parsing with backtrack

Analyzer example

Expr = Term (AddOp Term)*
Term = Factor (MultOp Factor)*
Factor = Float | Integer | "(" Expr ")"
Integer = Digits
Float = Digits? "." Digits
AddOp = [+-]
MultOp = [*/]
Digits = Digit+
Digit = [0-9]

Roman Redziejowski Top-down parsing with backtrack

Analyzer example

Expr = Term (AddOp Term)*
Term = Factor (MultOp Factor)*
Factor = Float | Integer | "(" Expr ")"
Integer = Digits
Float = Digits? "." Digits
AddOp = [+-]
MultOp = [*/]
Digits = Digit+
Digit = [0-9]

Factor: Float <==> Integer Tail(Factor)

Roman Redziejowski Top-down parsing with backtrack

Inspection

Factor = Float | Integer | "(" Expr ")"

Float <==> Integer Tail(Factor)
[0-9] <==> [0-9]

Float
Digits "." Digits

==============================

Integer Tail(Factor)
Integer (AddOp Term | MultOp Factor | ")") ...
Digits ([+-] Term | [*/] Factor | ")") ...

Roman Redziejowski Top-down parsing with backtrack

A modification

Suppose I want to write 2(3+5) instead of 2*(3+5)

Expr = Term (AddOp Term)*
Term = Factor (MultOp Factor)*
Factor = Float | Integer | "(" Expr ")"
Integer = Digits
Float = Digits? "." Digits
AddOp = [+-]
MultOp = [*]? [/]
Digits = Digit+
Digit = [0-9]

Roman Redziejowski Top-down parsing with backtrack

A modification

Suppose I want to write 2(3+5) instead of 2*(3+5)

Expr = Term (AddOp Term)*
Term = Factor (MultOp Factor)*
Factor = Float | Integer | "(" Expr ")"
Integer = Digits
Float = Digits? "." Digits
AddOp = [+-]
MultOp = [*]? [/]
Digits = Digit+
Digit = [0-9]

Factor: Float <==> Integer Tail(Factor)
Digits: Digit <==> Tail(Digits)

Roman Redziejowski Top-down parsing with backtrack

Inspection

Factor = Float | Integer | "(" Expr ")"

Float <==> Integer Tail(Factor)
[0-9] <==> [0-9]

Float
Digits? "." Digits
Digits "." Digits

==============================

Integer Tail(Factor)
Integer (AddOp Term | MultOp Factor | ")") ...
Digits ([+-] Term | [*] Factor | Factor | [/] Factor | ")") ...
Digits ([+-] Term | [*] Factor | "." Digits | [/] Factor | ")") ...

Roman Redziejowski Top-down parsing with backtrack

Inspection

Factor = Float | Integer | "(" Expr ")"

Float <==> Integer Tail(Factor)
[0-9] <==> [0-9]

Float
Digits? "." Digits
Digits "." Digits

==============================

Integer Tail(Factor)
Integer (AddOp Term | MultOp Factor | ")") ...
Digits ([+-] Term | [*] Factor | Factor | [/] Factor | ")") ...
Digits ([+-] Term | [*] Factor | "." Digits | [/] Factor | ")") ...

It means 3.5 is not recognized as 3*.5

Roman Redziejowski Top-down parsing with backtrack

Inspection

Factor = Float | Integer | "(" Expr ")"

Float <==> Integer Tail(Factor)
[0-9] <==> [0-9]

Float
Digits? "." Digits
Digits "." Digits

==============================

Integer Tail(Factor)
Integer (AddOp Term | MultOp Factor | ")") ...
Digits ([+-] Term | [*] Factor | Factor | [/] Factor | ")") ...
Digits ([+-] Term | [*] Factor | "." Digits | [/] Factor | ")") ...

It means 3.5 is not recognized as 3*.5

The other indication means 35 is not recognized as 3*5

Roman Redziejowski Top-down parsing with backtrack

What about predicates?

If the grammar uses predicates, it is no longer EBNF.

Roman Redziejowski Top-down parsing with backtrack

What about predicates?

If the grammar uses predicates, it is no longer EBNF.

No LEBNF (e).

Can not talk about equivalence.

Roman Redziejowski Top-down parsing with backtrack

What about predicates?

If the grammar uses predicates, it is no longer EBNF.

No LEBNF (e).

Can not talk about equivalence.

Can only make a loose argument that limited backtracking does not
affect the result if for all A = e1|e2 holds

LPEG(e1)Σ
∗ ∩ LPEG(e2)Tail(A) = ∅

Roman Redziejowski Top-down parsing with backtrack

A sort of solution

Define LEBNF (&e) = LEBNF (!e) = {ε}.

Roman Redziejowski Top-down parsing with backtrack

A sort of solution

Define LEBNF (&e) = LEBNF (!e) = {ε}.

This preserves LPEG(e) ⊆ LEBNF (e).

And LL(1) makes sense.

Roman Redziejowski Top-down parsing with backtrack

A sort of solution

Define LEBNF (&e) = LEBNF (!e) = {ε}.

This preserves LPEG(e) ⊆ LEBNF (e).

And LL(1) makes sense.

And LL(1) implies LEBNF (e1)Σ
∗ ∩ LEBNF (e2)Tail(A) = ∅

and this implies LPEG(e1)Σ
∗ ∩ LPEG(e2)Tail(A) = ∅

and I can use LL(1) to select cases for inspection.

Roman Redziejowski Top-down parsing with backtrack

Analyzer example

Statement = Keyword This | Identifier That
Keyword = "print" !Letter
Identifier = !Keyword Letter+
Letter = [a-z]
This = ...
That = ...

Roman Redziejowski Top-down parsing with backtrack

Analyzer example

Statement = Keyword This | Identifier That
Keyword = "print" !Letter
Identifier = !Keyword Letter+
Letter = [a-z]
This = ...
That = ...

Statement: Keyword This <==> Identifier That Tail(Statement)

Roman Redziejowski Top-down parsing with backtrack

Inspection

Statement = Keyword This | Identifier That

Keyword This <==> Identifier That Tail(Statement)
"print" <==> [a-z]

Keyword This
"print" !Letter This

==============================

Identifier That Tail(Statement)
Identifier That ...
!Keyword Letter+ That ...

Roman Redziejowski Top-down parsing with backtrack

Research problem

Replace predicates by something equally useful
but compatible with EBNF,
to enable formal proof of LPEG(e) = LEBNF (e).

Roman Redziejowski Top-down parsing with backtrack

Research problem

Replace predicates by something equally useful
but compatible with EBNF,
to enable formal proof of LPEG(e) = LEBNF (e).

EBNF defines language by construction.
PEG predicates belong to recognition.

Roman Redziejowski Top-down parsing with backtrack

Thanks

THANK YOU FOR YOUR PATIENCE!

Roman Redziejowski Top-down parsing with backtrack

