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Abstract

Recursive-descent parsers can not handle left recursion, and several solutions to this problem

have been suggested. This paper presents yet another solution. The idea is to modify recursive-

descent parser so that it reconstructs left-recursive portions of syntax tree bottom-up, by ”recursive

ascent”.

1 Introduction

Recursive-descent parser is a collection of ”parsing procedures” that call each other recursively, mim-

icking the derivation process. This simple scheme cannot be applied if the grammar is left-recursive: a

parsing procedure may indefinitely call itself, every time facing the same input. Some solutions have

been suggested, and they are outlined in Section 9 at the end. We present here yet another approach.

We view parsing as the process of reconstructing the syntax tree of given string. For this purpose, we

equip parsing procedures with ”semantic actions” that explicitly produce that tree. Recursive descent re-

constructs syntax tree starting from the top. We suggest to reconstruct left-recursive portions of the tree

bottom-up, by a process that we call ”recursive ascent”. This is also done by procedures that call each

other recursively and have their own semantic actions. These procedures can be regarded as new parsing

procedures. We incorporate them into the recursive-descent parser, so that recursive ascent is at the end

carried out as part of recursive-descent parser for a new grammar, referred to as the ”dual grammar”. The

dual grammar is not left-recursive, and its parser produces syntax tree for the original grammar.

In Section 2 we recall the necessary notions: BNF grammar, derivation, and syntax tree. In Sec-

tion 3 we recall the idea of recursive-descent parser and introduce ”semantic actions” that reconstruct

the syntax tree. After introducing the necessary concepts in Section 4, we introduce in Section 5 the

idea of recursive ascent together with procedures to perform it. They are illustrated by two examples in

section 6. In Section 7 we point out that the procedures just defined are parsing procedures for dual gram-

mar. Two Propositions state the essential properties of that grammar. Section 8 looks at implementation

of choice expressions, Section 9 outlines other known solutions. Some unsolved problems are discussed

in Section 10. Proofs of the Propositions are given in the Appendix.

2 The grammar

We consider a BNF-like grammar G = (N,Σ,E, E , Ns) with set N of non-terminals, set Σ of terminals,

set E of expressions, function E from non-terminals to expressions, and start symbol Ns ∈ N.

An expression is one of these:

– a ∈ Σ (”terminal”),

– N ∈ N (”non-terminal”),

– e1 . . . en (”sequence”),

– e1| . . . |en (”choice”),
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where each of ei is an expression. The function E is defined by a set of rules of the form N → e, where

e is the expression assigned by E to non-terminal N . We often write N → e to mean e = E(N). In

the following, expressions a ∈ Σ and N ∈ N will be viewed as special cases of choice expression with

n = 1. We do not include empty string ε among expressions. The problems caused by it and suggested

solutions are discussed in Section 10.

Non-terminal N → e1 . . . en derives the string e1 . . . en of symbols, while N → e1| . . . |en derives

one of e1, . . . , en. The derivation is repeated to obtain a string of terminals. This process is represented

by syntax tree. The set of all strings derived from N ∈ N is called the language of N and is denoted

by L(N). Figures 1 and 2 are examples of grammar G, showing syntax trees of strings derived from the

start symbol.

N = {Z,A,A1,B,B1,B2}
Σ = {a,b,x,y}
Ns = Z

Z → x A y

A → A1 | a

A1→ B a

B → B1 | B2 | b

B1→ A b

B2→ B b

Z

x yA

A1

aB

B2

bB

B1

bA

a

Figure 1: Example of grammar G and syntax tree of ’xabbay’

N = {E,E1,F,F1}
Σ = {a,+,*}
Ns = E

E → E1 | F

E1→ E + F

F → F1 | a

F1→ F * b

E

E1

E F+

F

F1

F b*

a

F1

F b*

a

Figure 2: Example of grammar G and syntax tree of ’a*b+a*b’

3 Recursive descent

The idea of recursive-descent parsing is that each terminal and each non-terminal is assigned its parsing

procedure. The procedure either consumes some prefix of given input, or fails and leaves the input

unchanged. Thus:

– Procedure for terminal a consumes a if the input begins with a. Otherwise it fails.

– Procedure for N → e1 . . . en calls the procedures e1, . . . , en, in this order, and fails if any of them

fails.

– Procedure for N → e1| . . . |en somehow selects and calls one of the procedures e1, . . . , en that

succeds on the input. It fails if none of them can succeed. (The way of making this selection is

discussed in Section 8.)
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An important property of this metod of parsing is close connection between the grammar and the parsing

procedures. Namely, grammar rules N → e1 . . . en and N → e1| . . . |en may be alternatively regarded as

concise representations of parsing procedures, with N being the procedure’s name and ei representing a

call to procedure ei. The pattern of successful calls to parsing procedures mimics the derivation process,

so successful call to procedure N consumes a prefix belonging to L(N). The information how the

consumed string was derived is hidden in the pattern of procedure calls, and recorded in some unspecified

way.

We begin our construction by making this recording explicit, and suggest that each successful parsing

procedure returns syntax tree of the string it consumed. For this purpose, we add to each procedure its

semantic action, executed after successful parsing. It is shown below enclosed in braces {}:

N → e1 . . . en {return [N⊳[e1] . . . [en]]} (1)

N → e1| . . . |en {return [N⊳[ei]]} (2)

We denote here by [t] a syntax tree with top node t, and write [t⊳[t1] . . . [tn]] to indicate that t has

subtrees [t1], . . . , [tn] as children.

Each successfully called procedure ei returns the syntax tree [ei]. If ei is for terminal a, it returns

syntax tree [a] of height 0. Procedure (1) returns a tree with top node N having as children the trees

[e1], . . . , [en] returned by called procedures. Procedure (2) returns a tree with top node N having as

single child the tree [ei] returned by the selected procedure.

Parsing starts with invoking (1) or (2) for the start symbol. It results in recursive calls to subprocedures

that eventually return syntax trees for the substrings they consume. At the end, procedure Ns builds and

returns the final result.

Assuming that (2) makes its choice based only on input ahead, this does not work if the grammar

contains left recursion. This is the case for both our examples. If A chooses A1, and B chooses B1, they

are called again without any input being consumed in between, and thus bound to indefinitely make the

same choices, never returning any result. The situation is similar for E and F.

4 Some definitions

We need some definitions before suggesting how to handle left recursion.

For N ∈ N and e ∈ N ∪ Σ, define N
first
−→ e to mean that parsing procedure for N called on some

input may call that for e on the same input. We have thus:

– If N → e1 . . . en, N
first
−→ e1.

– If N → e1| . . . | en, N
first
−→ ei for 1 ≤ i ≤ n.

Let
First
−→ be the transitive closure of

first
−→. Non-terminal N ∈ N is (left) recursive if N

First
−→ N . The

set of all recursive non-terminals of G is denoted by R. All non-terminals in Figure 1 except Z, and all

non-terminals in Figure 2 are recursive.

Define relation between recursive N1, N2 that holds if N1

First
−→ N2

First
−→ N1. This is an equivalence

relation that partitions R into equivalence classes. We call them recursion classes. The recursion class of

N is denoted by C(N). All non-terminals in Figure 1 belong to the same class; the grammar of Figure 2

has two recursion classes: {E,E1} and {F,F1}.

In syntax tree, the leftmost path emanating from any node is a chain of nodes connected by
first
−→.

Suppose N1 and N2 belonging to the same recursion class C appear on the same leftmost path. Any

non-terminal N between them must also belong to C, which follows from N1

First
−→ N

First
−→ N2

First
−→ N1.

It means that members of C appearing on the same leftmost path must form an uninterrupted sequence.

We call such sequence a recursion path of class C. The only recursion path in Figure 1 is the whole
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leftmost path from the first A without final a. The syntax tree in Figure 2 has two recursion paths, one

starting with E and another with F.

Let N → e1 . . . en be on a recursion path. The next item on the leftmost path is e1, and it must belong

to C(N) to ensure N
First
−→ N . It follows that the last item on a recursion path must be N → e1| . . . |en

where at least one of ei is not a member of C(N). Such N is called an exit of C(N), and its alternatives

outside C(N) are the seeds of C(N). In Figure 1, both A and B are exits, and the seeds are a and b. In

Figure 2, E and F are exits of their respective classes, and the corresponding seeds are F and a.

A non-terminal that can be the start of a recursion path is called an entry of its recursion class. It is

one of these:

– An element of E(N) of non-recursive N .

– One of e2, . . . , en for recursive N → e2 . . . en.

– A seed of another recursion class.

– The start symbol.

The recursion class in Figure 1 has A as its entry. The recursion classes in Figure 2 have E and F as their

respective entries.

5 Recursive ascent

To handle left recursion, we suggest that parsing procedure for entry E does not follow the pattern given

by (1) and (2) above. It still returns syntax tree [E], but builds this tree in a different way.

As noted in the preceding section, [E] has recursion path starting with the entry node E and ending

with the exit node followed by a seed. We start with the seed and ascend the recursion path, adding one

node at a time. We reconstruct the side branches when the added node represents sequence expression.

The tree being constructed is local to the invocation of procedure E. We call it ”the plant”, and denote it

by [π].

Sowing the seed

Borrowing the way we used to represent parsing procedures, we outline the new entry procedure as:

E → S {sow [S]} growS {return [π]} . (3)

Here, S represents call to parsing procedure for the seed S. If successful, it returns syntax tree [S], and

semantic action sow [S] initializes [π] with that tree. This is followed by a call to new procedure growS,

that continues parsing and grows the plant towards [E]. If it succeeds, the final semantic action returns

the reconstructed tree. The whole procedure fails if S or growS does.

In general, the recursion class C(E) may have more than one seed, so E has to choose one that matches

the input. To represent this choice, we borrow the syntax of choice expression:

E → S1 {sow [S1]} growS1 {return [π]} | . . . | Sn {sow [Sn]} growSn {return [π]} , (4)

where S1, . . . , Sn are all seeds of C(E).

Growing the plant

The plant is grown by recursive procedures, each adding one node and then calling another procedure to

continue growing. The procedure growR that grows plant with top R can be sketched as follows:

growR → addP growP. (5)

4



It adds node P , and continues to grow the plant that has now P on top. The added node P is a predecessor

of R in the recursion path, meaning P
first
−→ R. In general, R may have several predecessors P satisfying

P
first
−→ R, so growR must choose one of them that matches the input. Again, we represent this in the

way we used for choice expression:

growR → addP1 growP1 | . . . | addPn growPn (6)

where P1, . . . , Pn are all members of C(E) such that Pi
first
−→ R. We simplify this by introducing new

procedure

$P → addP growP, (7)

so that (6) becomes:

growR → $P1 | . . . | $Pn. (8)

The growing may stop when the plant reaches E. That means, (8) for E must have one more alternative,

”do nothing”, which we represent by ε:

growE → $P1 | . . . | $Pn | ε. (9)

Adding a node

Operation addP is illustrated in Figure 3. It adds node P to plant [R].

R

[π]

P → Re2 . . . en

P

R e2 · · · en

add [P⊳[π][e2] . . . [en]]

P → e1| . . . |R| . . . |en

P

R

add [P⊳[π]]

Figure 3: addP

If P → e1e2 . . . en, the added node P will have the present plant as the first child. The other children

are obtained by calling e2, . . . , en. Operation add [P⊳[π][e2] . . . [en]] shown in the Figure adds node P
with these children to the plant.

If P → e1| . . . |en, the added node P has only one child, namely the present plant. Operation add [P⊳[π]]
shown in the Figure adds such node P to the plant.

Inserting these operations in (7), we obtain:

$P → e2 . . . en {add [P⊳[π][e2] . . . [en]]} growP if P → e1 . . . en, (10)

$P → {add [P⊳[π]]} growP if P → e1| . . . |en. (11)

Multiple entries

The above assumed that each recursion class has only one entry. This is not true for many grammars; for

example, the class of Primary in Java has four entries.

Multiple entries can be handled because calls to entry procedures are nested, so one can keep track of

which one is currently active. The exit alternative ε in growE must be applied only if E is the currently

active one.
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6 Examples

Example 1

Applying (1), (4), (8–9), (10–11) to the grammar of Figure 1, replacing calls for ”grow” by their defi-

nitions, and omitting unused procedures, we obtain the procedures shown in Figure 4. We apply them

to string ’xabbay’, showing how they construct the syntax tree appearing in the Figure. Numbers on

the left indicate top of the plant after each step. The procedures for choice expressions are assumed to

always make correct choice using some oracle; this will be discussed later in Section 8.

Z → x A y {return [Z⊳[x][A][y]]}
A → a {sow [a]} $A {return [π]}

| b {sow [b]} $B {return [π]}
$A → {add [A⊳[π]]} ($B1 | ε)
$B → {add [B⊳[π]]} ($A1 | $B2)

$A1→ a {add [A1⊳[π][a]]} $A

$B1→ b {add [B1⊳[π][b]]} $B

$B2→ b {add [B2⊳[π][b]]} $B

Z

x yA

A1

aB

B2

bB

B1

bA

a

(10)

(9)

(8)

(7)

(6)

(5)

(4)

(3)

(2)

Figure 4: Procedures and example of parsing for grammar of Figure 1.

1. The parsing starts with procedure for non-recursive Z that, in the usual way, calls the procedures x,

A, and y. After consuming ’x’, Z applies A to ’abbay’.

2. Procedure A chooses its first alternative, applies a to ’abbay’, leaving ’bbay’, and initializes [π]

with [a]. Then it calls $A.

3. Procedure $A adds node A on top of [a]. Then it chooses to call $B1.

4. Procedure $B1 applies b to ’bbay’, leaving ’bay’, and creates node B1 with children [A] and [b].

Then it calls $B.

5. Procedure $B adds node B on top of [B1]. Then it chooses to call $B2.

6. Procedure $B2 applies b to ’bay’, leaving ’ay’, and creates node B2 with children [B] and [b].

Then it calls $B.

7. Procedure $B adds node B on top of [B2]. Then it chooses to call $A1.

8. Procedure $A1 applies a to ’ay’, leaving ’y’, and creates node A1 with children [B] and [a]. Then

it calls $A.

9. Procedure $A adds node A on top of [A1]. Then it chooses ε, and returns, causing the invoked $A1,

$B, $B2, $B, $B1, $A to terminate one after another. Finally, it returns [A] to Z.

10. Procedure Z consumes the remaining ’y’ and returns the tree [Z⊳[x][A][y]].
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Example 2

For example of Figure 2, we obtain the procedures shown in Figure 5. We apply them to string ’a*b+a*b’,

showing how they construct the syntax tree appearing in the Figure. Numbers indicate top of the plant

after each step.

E → F {sow [F]} $E {return [π]}
$E → {add [E⊳[π]]} ($E1 | ε)
$E1→ + F {add [E1⊳[π][+][F]]} $E

F → a {sow [a]} $F {return [π]}
$F → {add [F⊳[π]]} ($F1 | ε)
$F1→ * b {add [F1⊳[π][*][b]]} $F

E

E1

E F+

F

F1

F b*

a

F1

F b*

a

(15)

(14)

(7)

(5,6)

(4)

(3)

(2)

(12)

(11)

(10)

(9)

Figure 5: Procedures and example of parsing for grammar of Figure 2.

1. Procedure E calls parsing procedure for its seed F.

2. Procedure F calls parsing procedure for its seed a, which consumes ’a’, leaving ’*b+a*b’.

Then it initializes its plant with [a] and calls $F.

3. Procedure $F adds F on top of [a] and chooses to call $F1.

4. Procedure $F1 calls procedures * and b that consume ’*b’, leaving ’+a*b’.

Then it adds [F1⊳[F][*][b]] on top of [F] and calls $F.

5. Procedure $F adds F on top of [F1] and chooses ε, causing the invoked $F1 to terminate.

Then it returns to procedure F.

6. Procedure F returns to E the syntax tree [F] of ’a*b’.

Procedure E initializes its plant with [F]. What has been the plant of F becomes now the seed of E.

Procedure E calls then $E.

7. Procedure $E adds E on top of [F] and decides to call $E1.

8. Procedure $E1 calls procedures + and F. The first consumes ’+’, leaving ’a*b’.

9. Procedure F calls parsing procedure for its seed a, which consumes ’a’, leaving ’*b’. It initializes

its own plant with [a]. We have now two plants: that of procedure E, for the moment left waiting,

and the new plant of F. Procedure F calls $F.

10. Procedure $F adds F on top of [a]. Then it chooses to call $F1.

11. Procedure $F1 calls procedures * and b that consume the remaining ’*b’.

Then it adds [F1⊳[F][*][b]] on top of [F] and calls $F.

12. Procedure $F adds F on top of [F1] and chooses ε, causing the invoked $F1 to terminate.

Then it returns to procedure F.

13. Procedure F returns to E the syntax tree [F] of ’a*b’.

14. Procedure $E1 adds E1⊳[E][+][F]] on top of [E]. The plant of F becomes now a branch of the

plant of E. The procedure calls then $E.

15. Procedure $E adds E on top of $E1 and chooses ε, causing the invoked $E1 to terminate. Then it

returns to procedure E.

16. Procedure E terminates, returning the constructed tree [E].
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7 The dual grammar

Consider now the procedures in Figure 4 with their semantic actions made invisible:

Z → x A y

A → a $A | b $B

$A → $B1 | ε
$B → $A1 | $B2

$A1→ a $A

$B1→ b $B

$B2→ b $B

This is a new grammar with the set {Z,A,$A,$B,$A1,$B1,$B2} of non-terminals. Reversing what was

said at the beginning of Section 3, we discover that procedures in Figure 4 are parsing procedures for

this grammar. It means that our parsing with recursive ascent is actually performed as recursive descent

for a new grammar. This new grammar is in the following referred to as dual grammar for the grammar

of Figure 1. The procedures differ from (1–2) by having special semantic actions that construct syntax

tree according to the original grammar. The dual grammar for grammar of Figure 2 is:

E → F $E

$E → $E1 | ε
$E1→ + F $E

F → a $F

$F → $F1 | ε
$F1→ * a $F

One can see that dual grammar is in general constructed as follows:

– For each entry E create rule E → S1 growS1 | . . . | Sn growSn,

– Replace each recursive R → e1e2 . . . en by $R → e2 . . . en growR,

– Replace each recursive R → e1 | . . . | en by$R → growR,

– Replace growR by $P1 | . . . | $Pm if R 6= E,

– Replace growE by $P1 | . . . | $Pm | ε,

where

– S1, . . . , Sn are all seeds of C(E),

– P1, . . . , Pm are all members of C(E) such that Pi
first
−→ R.

The dual grammar is an n-tuple D = (ND,Σ,ED, ED, Ns). Its set ND consists of:

– The non-recursive members of N;

– The entries to recursion classes;

– The new non-terminals with $-names.

In the following, the set of all non-recursive members of N is denoted by R, and the set of all entries

by RE . They appear as non-terminals in both G and D. The set R ∪ RE of these common symbols

is denoted by NC . The language LD(N) of N ∈ ND is the set of all terminal strings derived from N
according to the rules of D.
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The two important facts about the dual grammar are:

Proposition 1. The dual grammar is left-recursive only if the original grammar contains a

cycle, that is, a non-terminal that derives itself.

Proof is found in the Appendix.

Proposition 2. LD(N) = L(N) for all N ∈ NC .

Proof is found in the Appendix.

8 Implementing the choices

One can see that the choices (4) and (8–9) became standard choice expressions in the dual grammar. The

dual grammar contains also choice expressions inherited from the original grammar. So far, we did not

say anything about how procedures for these expression decide which alternative to choose.

A safe way is to systematically check all choices, backtracking after each failure, until we find the

correct one (or find that there is none). This, however, may take exponential time.

There exist shortcuts that give reasonable processing time. The problem is that each is applicable only

to a restricted class of grammars. If D is outside this class, the parser will reject some strings of LD(Ns).
One shortcut is to look at the next input terminal. This is very fast, and involves no backtracking, but

requires that strings derived from different alternatives begin with different terminals. This is known as

the LL(1) property. (As a matter of fact, both dual grammars in our examples have this property.)

Another shortcut, not much investigated, is to look at input within the reach of one parsing procedure.

It requires that some procedures eventually called from different alternatives never succeed on the same

input. This property of the grammar is suggested to be called LL(1p) [8].

Yet another one is limited backtracking, called ”fast-back” in [5], page 57, and recently exploited in

Parsing Expression Grammar [3]. Here the choice expression tries different alternatives and accepts the

first successful one. Backtracking is limited to sequence expressions. Using the technique of ”packrat

parsing” [2], one can make it work in linear time.

Limited backtracking requires that all choices after first successful one must lead to failure. We say that

grammar having this property is fast-back safe. A sufficient condition for fast-back safety is given in [9].

(Note that this property depends on the order of alternatives in choice expressions.)

Proposition 2 implies that if grammar D is safe for the chosen method (LL(1), LL(1p), respectively

fast-back safe), the recursive-descent parser for D is a correct parser for G.

A subject of further research is how to translate the above properties of grammar D into equivalent

properties of grammar G.

9 Previous work

Our method is inspired by one outlined by Hill in [4]. His report describes only the algorithm, but it is

clear that it follows from the idea of reconstructing the recursion path. Each entry of recursion class is

represented by data structure called the ”grower”. The grower contains all seeds of its recursion class,

and for each seed, the chains of its parents. Parsing procedure for the entry consists of inretpreting the

grower; it starts with the seeds and follows their parent chains.
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The traditional way of eliminating left recursion is to rewrite the grammar so that left recursion is

replaced by right recursion. It can be found, for example, in [1], page 176. It consists of replacing

A → A a | b (12)

by

A → b A’

A’ → a A’ | ε .

Below is an example of this rewriting for the grammar given in [11] as an example of intersecting left-

recursion loops:

E → F n | n

E → F n | n F → (n + x | G -) F’

F → E + x | G - F’→ (n + x) F’ | ε
G → H m | E G → (H m | n | (n + x) F’ n) G’

H → G y G’→ (- F’ n) G’ | ε
H → (n G’ y | (n + x) F’ n G’ y) H’

H’→ (m G’ y) H’ | ε

The process is cumbersome and produces large results. This can be compared with our dual grammar,

which is obtained by a rather straightforward rewriting of syntax rules:

E → n $E

$E → + x $F | $G | ε
$F → n $E

$G → - $F | $H

$H → y m $G

The main problem with the traditional rewrite is that it completely loses the original intent of the gram-

mar. The same can be said about our dual grammar, but the difference is that our recursive descent for

dual grammar produces correct syntax tree according to the original grammar.

In [13], Warth and al. suggested how to handle left recursion in Parsing Expression Grammar (PEG) by

modifying the packrat parser. The principle of packrat parsing is that the result of each parsing procedure

is saved in a ”memoization table”. The table is consulted before each new call, and if a result is found

for the same position in input, it is used directly instead of calling the procedure.

The idea can be explained on the example grammar (12). Before the first call to A, we save ”failed” as

the result of A at the current position. Procedure A starts with the alternative Aa which requires calling A

and then a. But the result of calling A is already in the table; as it is ”failed”, the alternative Aa fails, and

A calls b. If it succeeds, we save ’b’ as the new result of A.

We backtrack and call A again. Alternative Aa obtains now ’b’ as the result of A and calls a. If it

succeeds, we save ’ba’ as the new result of A. This is referred to as ”growing the seed”.

We repeat this as long as a in Aa succeeds. When it fails, we stop the repetition and are left with the

result’ba...a’ of A in the table.

In [12], Tratt indicated that this method does not require packrat parser, only a table for results of left-

recursive procedures. Also, that left-recursive non-terminals can be detected by analyzing the grammar.

Medeiros et al. [7] introduced the notion of ”bounded left recursion”. The idea can again be explained

on the example grammar (12). Procedure A is required to try alternative Aa exactly n times before

choosing b. The string thus consumed is saved as An. We call procedure A repeatedly with increasing
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values of the ”bound” n, obtaining A0, A1, A2, etc..

Left part of Figure 6 illustrates how A2 is obtained for input ’baax’. The arrows represent successful

calls. One can see from the Figure how this is obtained from saved A1 = ’ba’, and this from A0 = ’b’.

Right part of Figure 6 shows what happens for n = 3. Dotted arrows represent failing calls. The a in the

highest Aa encounters ’x’ and fails, and so does Aa. Procedure A, receiving failure from Aa, consumes

’b’, giving A3 = ’b’. This is the signal to stop repetition and return the saved A2.

A

Aa

aAa

b a

A2 = ’baa’

A

bAa

xAa

aAa

b a

A3 = ’b’

Figure 6: Example of bounded left recursion applied to ’baax’

The methods from [7, 12, 13] use memoization table; they repeatedly evaluate the left-recursive pro-

cedure in the process of growing the seed or incrementing the bound. None of these is the case with our

approach.

All methods [4, 7, 12, 13] must handle situations more complex than the elementary example (12),

like indirect and nested left recursion. They add a substantial amount of overhead to the mechanism of

procedure call. This is not the case with our method, where all complexity is delegated to the task of

constructing the dual grammar. The only overhead are the semantic actions of constructing the syntax

tree, but they must also be invisibly included in the above methods to record the pattern of procedure

calls.

In principle, we have a recursive-descent parser with simple calls to parsing procedures. If so desired,

it can use limited backtracking implemented with packrat technology. In addition, we offer a way to see

if the chosen method of handling choice expressions results in correct parser. None of the cited solutions

gives any hint on how to do it.

10 Unsolved problems

We did not include empty word ε in our grammar. (It appeared in the dual grammar, but only with

a special function.) The result of adding ε is that some expressions may derive empty string. These

expressions are referred to as nullable, and can be identified as such by analyzing the grammar.

Nullable e1 in N → e1 . . . en and nullable ei in N → e1| . . . |en extend the definition of
first
−→ beyond

the two rules given in Section 4. As the result, non-terminal may be recursive or not depending on input.

An example is A→ (a|ε)Ab|cwhere A is left-recursive only if input does not start with a. It is known

as ”hidden” left recursion. This specific case can be solved by redefining the grammar as

A → (Ab|c) | (aAb|c),

but we do not provide a general solution. One can always allow ε under condition that it does not affect

the set of recursive non-terminals, which can be checked by examining the grammar.

11



Nullable seed and nullable e2 . . . en in recursive N → e1e2 . . . en invalidate the proof of Proposition 1.

That means the dual grammar can be left-recursive even if G does not have a cycle. It requires a specific

check for D being left-recursive.

Another kind of unsolved problem is E → E+E|n, which results in a right-recursive parse for E. This

is so because the second E invoked by (10) gobbles up all input before the ascent can continue.

The problem with E → E+E|n was signalled by Tratt in [12]. In fact, the right-recursive result is

correct because the grammar is ambiguous. Tratt explains why the left-recursive parse is desirable, and

offers a solution for direct left recursion.

A solution proposed in [7] extends the grammar by assigning ”priorities” to different occurrences of E.

This opens new possibilities: a simple way of defining operator precedence. It is further exploited in [6].

11 Acknowledgements

This version is the result of comments from two anonymous referees and comments to presentation at

CS&P’2021 workshop [10].

A Proof of Proposition 1

For N ∈ ND and e ∈ ND ∪ Σ, define N
firstD
−→ e to mean that parsing procedure N may call parsing

procedure e on the same input:

(a) For N ∈ R,
firstD
−→ is the same as

first
−→.

(b) For N ∈ RE , N
firstD
−→ S for each seed S of C(N).

(c) For $R → e2 . . . engrowR, $R
firstD
−→ e2.

(d) For $R → growR, $R
firstD
−→ $Pi for each Pi ∈ C(R) such that Pi

first
−→ R.

Suppose D is left-recursive, that is, there exist N1, N2, . . . , Nk ∈ ND where N1

firstD
−→ . . . N2

firstD
−→ . . .

firstD
−→

Nk and Nk = N1. We start by showing that none of them can be in NC .

Assume that N1 ∈ NC . That means N1 is either in R or in RE .

Suppose N1 ∈ R. Because N1 is the same in both grammars, we have ED(N1) = E(N1), so N2 is also

in N, and thus in NC . From N1

firstD
−→ N2 follows N1

first
−→ N2.

Suppose N1 ∈ RE . According to (b), N2 is a seed of C(N1), which is either non-recursive or an entry,

and thus is in NC . For a seed N2 of C(N1) holds N1

First
−→ N2.

The above can be repeated with N2, . . . , Nk−1 to check that Ni ∈ NC for all 1 ≤ i ≤ k and Ni
First
−→ Ni+1

for 1 ≤ i < k. As N1 = Nk, the latter means that none of Ni belongs to R, so they must all be in RE .

Moreover, they are all in the same recursion class, C(N1). According to (b), N2 is a seed of C(N1), that

cannot be a member of C(N1). This is a contradiction, so N1 /∈ NC , and this holds for the remaining

N2, . . . , Nk−1.

It follows that each Ni is a $-non-terminal of D. It cannot be that listed under (c) because then Ni+1 is

e2 which belongs to NC .

Hence, each Ni must have the form listed under (d). It follows that if Ni = $Ri for some Ri, Ni+1

must be $Ri+1 such that Ri+1

first
−→ Ri. Thus, exists in grammar G a sequence of non-terminals Rk

first
−→

. . .
first
−→ R2

first
−→ R1 with Rk = R1. Each of them has choice statement as E(Ri) and can derive itself in

k − 1 steps. �
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B Proof of Proposition 2

We show that each string derived from N ∈ NC ∪ Σ according to grammar G can be derived according

to grammar D and vice-versa. We say that derivation has height h to mean that its syntax tree has height

h. The proof is by induction on that height.

Induction base is the same in both directions: derivation of height 0. We consider terminal to be

derived from itself with syntax tree of height 0. The G- and D-derivations are identical.

The following two lemmas provide induction step for the two derivations.

Lemma 1. Assume that each string having G-derivation of height h ≥ 0 from N ∈ NC ∪Σ has

a D-derivation from N . Then the same holds for each string with G-derivation of height h+ 1.

Proof. Take any string w having G-derivation from N ∈ NC of height h+ 1.

(Case 1) N ∈ R.

If N → e1 . . . em, all ej are in NC and w = w1 . . . wm where each wj is G-derived from ej by derivation

of height h or less. We D-derive e1 . . . em from N , and then, according to induction hypothesis, D-

derive w = w1 . . . wm from e1 . . . em.

If N → e1| . . . |em, w is G-derived from one of ej by derivation of height h or less. We D-derive ej
from N , and then, according to induction hypothesis, D-derive w from ej .

(Case 2) N ∈ RE .

The G-derivation of w is shown in the left part of Figure 7. One can see that w = w0 . . . wn where w0

is G-derived from a seed and for 1 ≤ i ≤, wi is either G-derived from e2 . . . em (if Ri → e1 . . . em)

or is empty word ε (if Ri → e1| . . . |em). All these G-derivations are from members of NC and have

height h or less. Thus, by induction hypothesis, exist corresponding D-derivations of w0, . . . , wn. The

D-derivation of w using these results is shown as the right part of Figure 7. �

Rn

Rn−1

. . .

Ri

. . .

R2

R1

R0

N =

S =

wn

wn−1

wi

w2

w1

w0

N

$R1

$R2

. . .

$Ri

. . .

$Rn−1

$Rn

ε

S

w1w0

w2

wi

wn−1

wn

Figure 7: G-derivation and D-derivation from E. w0 is derived from the seed. Otherwise wi is
derived from e2, . . . , em for sequence Ri or ε for choice Ri.

Lemma 2. Assume that each string having D-derivation of height h ≥ 0 from N ∈ NC ∪Σ has

a G-derivation from N . Then the same holds for each string with D-derivation of height h+ 1.

Proof. (The proof is a mirror image of the proof of Lemma 1, but we spell it out.) Take any string w
having D-derivation from N ∈ NC of height h+ 1.
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(Case 1) N ∈ R.

If N → e1 . . . em, all ej are in NC and w = w1 . . . wm where each wj is D-derived from ej by derivation

of height h or less. We G-derive e1 . . . em from N , and then, according to induction hypothesis, G-derive

w = w1 . . . wm from e1 . . . em.

If N → e1| . . . |em, w is D-derived from one of ej by derivation of height h or less. We G-derive ej
from N , and then, according to induction hypothesis, G-derive w from ej .

(Case 2) N ∈ RE .

The D-derivation of w is shown in the right part of Figure 7. One can see that w = w0 . . . wn where w0

is D-derived from a seed and for 1 ≤ i ≤, wi is either D-derived from e2 . . . em (if Ri → e1 . . . em)

or is empty word ε (if Ri → e1| . . . |em). All these D-derivations are from members of NC and have

height h or less. Thus, by induction hypothesis, exist corresponding G-derivations of w0, . . . , wn. The

G-derivation of w using these results is shown as the left part of Figure 7. �
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