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Abstract
In recent years, a number of classical results connecting rational languages with finite semigroups
have been extended to infinite-word languages using the notion of an ω-semigroup: a semigroup
augmented with an associative infinite product. This paper takes a closer look at the associative
infinite product itself. It suggests some improvements and presents a couple of new facts.

1 Introduction

Extending binary operation to an infinite sequence of operands is not a new idea. A classical example
is the infinite series, which is such an extension of ”+”. A newer example is infinite concatenation of
words, a daily bread in the study of automata on infinite words. Another is concatenation product of an
infinite sequence of sets of words. Some of these extensions are associative, that is, the result does not
change if the factors are grouped by parentheses. Some are not, like the infinite series in the domain of
all real numbers. For a long time, associativity has been exploited in a rather informal way. But in recent
years, the research connecting automata, semigroups, and infinite-word languages required a more formal
treatment of infinite associativity. The products appearing in that context do not have the intuitive form
of being the limit of longer and longer finite products; thus the need of a precise treatment.

It seems that the first formal definition of infinite associativity was published in [10]. Slightly before,
the present author proposed a set of axioms for an associative infinite product in a Dagstuhl Seminar
lecture, of which only an abstract [17] was published.

The associative infinite product was introduced in [10] as a component of an ω-semigroup: a semigroup
augmented with such a product. Using this new notion, one could extend to infinite-word languages a
number of classical results connecting rational languages with finite semigroups [4–6,10–14].

This paper takes a closer look at the associative infinite product itself. We suggest some improvements
and present a couple of new facts.

In [10] and all subsequent work using ω-semigroups, one aspect of associativity is ensured by postulating
existence of an additional associative operation, the ”mixed product”. We note that this postulate can
be replaced by an equivalent property of the infinite product itself, which may sometimes be more
convenient. In all work with ω-semigroups, values of the infinite product are distinct from elements of
the underlying semigroup. This is not true in the general case, and we consider that possibility. A number
of important facts about the case of finite semigroup have been so far stated and proved as properties of
homomorphisms. We note that they can be stated in terms of the infinite product itself.

We consider different associative infinite products that can be defined on the same semigroup, and
introduce the notion of a homomorphism between these products. It turns out that all such products
are homomorphic images of a ”free product”, and one-to-one homomorphic images of certain ”primary
products”.

It was customary in the past to avoid concatenation of an infinite sequence of empty words. We give
examples showing that it may be usefully incorporated in an associative infinite product, and in more
than one way.

We also take a short look at infinite products defined as a limit of partial products, and at infinite
products in presence of left zeros.

The infinite products considered here are products of sequences indexed by natural numbers. Some
recent papers [1, 2] introduce associative products of sequences indexed by higher ordinals. A general
theory of infinitary operations was developed as early as 1959 by S lomiński [19], but with a focus on
properties other than associativity.

∗Appeared in Fundamenta Informaticae 60 (2004) 333–350.
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2 Preliminaries

We use terminology and notation from [7] and [23], adapted to our purpose. The image of x ∈ X under
mapping φ : X → Y is denoted by φ(x). The composition of mappings φ and ψ is denoted by φψ, with
φψ(x) meaning ψ(φ(x)).

An operation on set X is a mapping · : X×X → X. The image of (x, y) ∈ X×X under such mapping
is denoted by x · y. The operation is associative if (x · y) · z = x · (y · z) for all x, y, z ∈ X.

An action of set S on set X is a mapping ◦ : S ×X → X. The image of (s, x) ∈ S ×X under such
mapping is denoted by s ◦ x.

We say that mapping φ : X → Y is compatible with action ◦ to mean that φ(x1) = φ(x2) implies
φ(s ◦ x1) = φ(s ◦ x2) for all s ∈ S and x1, x2 ∈ X. The image of ◦ under φ is an action ◦φ of S on Y
such that s ◦φ φ(x) = φ(s ◦ x) for all s ∈ S and x ∈ X. If such an image exists, it is clearly unique. The
following facts are easy to verify:

Lemma 1. For any action ◦ on X, surjective mapping φ : X → Y , and mapping ψ : Y → Z:

(a) An image of ◦ under φ exists if and only if φ is compatible with ◦.
(b) If φ is compatible with ◦, φψ is compatible with ◦ if and only if ψ is compatible with ◦φ.
(c) The image ◦φψ, if it exists, is identical to (◦φ)ψ.

For an equivalence relation ≈ on set X, its natural mapping nat≈ assigns to each x ∈ X the class of
X/ ≈ containing x. We say that the relation ≈ is compatible with action ◦ of S on X if its natural
mapping is compatible with ◦; in other words, if x ≈ y ⇒ s ◦ x ≈ s ◦ y for all s ∈ S and x, y ∈ X.

The set of all natural numbers (positive integers) is denoted by N. A sequence x of elements of set X
is a mapping x : N → X. It is visualized as a linear arrangement of elements x(1),x(2),x(3), . . . . The
set of all sequences of elements of X is denoted by XN. The sequence x, x, x, . . . with all elements equal
to x ∈ X is denoted by xN. The sequence x,x(1),x(2),x(3), . . . obtained by adding x ∈ X in front of
sequence x ∈ XN is denoted by x ◦ x. This action ◦ : X ×XN → XN is referred to as prefixing.

A semigroup is a pair (S, · ) where S is a set and · is an associative operation on S. We refer to that
operation as the semigroup product. In the following discussion, S denotes an arbitrary semigroup (S, · ).

3 Infinite associativity

We define an infinite product, or ω-product, on S as a pair (V, π) where V is a set, not necesarily disjoint
with S, and π is a surjective mapping from SN to V . We often speak informally of mapping π as the
infinite product, and refer to V as the set of values of the product. This definition has yet no relation to
the semigroup product of S. In particular, π(s1, s2, s3, . . . ) is not required to be the limit of s1 ·s2 · . . . ·sn
for n→ ∞. In the following, we connect the two products by extending the notion of associativity.

The important consequence of associativity of semigroup product is that products of more than two
factors can be written unambiguously as s1 · s2 · . . . · sn. The result remains unchanged if factors are
grouped in an arbitrary way by means of parentheses.

It is convenient to write the ω-product π(s1, s2, s3, . . . ) symbolically as s1 ·s2 ·s3 · . . . . In this form, the
symbol · denotes the ω-product, not an operation on two neighbouring factors. In an analogy to finite
products, we would like the value of infinite product to remain unchanged by insertion of parentheses.
We would like to freely use identities such as

s1 · s2 · s3 · s4 · s5 · s6 · · · = (s1 · s2 · s3) · (s4 · s5 · s6) · . . . , (1)

s1 · s2 · s3 · . . . = (s1 · . . . · sn) · (sn+1 · sn+2 · sn+3 · . . . ). (2)

In (1), we understand the symbol · within the parentheses to mean the semigroup product, and outside
the parentheses to mean the ω-product. In (2), the symbol · within the first pair of parentheses denotes
the semigroup product; within the second pair, it denotes the ω-product. The dot in the middle is neither
of the two: it stands for an action S × V → V . This action will have to be suitably defined.
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3.1 Invariance under contractions

We need an additional definition to formalize (1). Let x ∈ SN and let n = n1, n2, n3, . . . be an ascending
sequence of natural numbers. Define the contraction of x by n, written x|n, to be the sequence y ∈ SN

where:

y(1) = x(1) · . . . · x(n1),

y(i) = x(ni−1 + 1) · . . . · x(ni) for i > 1.

For example: (s1, s2, s3, . . . ) | (1, 3, 5, . . . ) = (s1), (s2 · s3), (s4 · s5), . . . . (To simplify notation, we allow
k = 1 in a product of k factors; the product is then identical to the single factor.) For sequences x,y ∈ SN,
we write x ◃ y or y ▹ x to mean that y is a contraction of x (by some n). The desired property can
now be expressed as:

x ◃ y ⇒ π(x) = π(y) for all x,y ∈ SN. (3)

3.2 Compatibility with prefixing

To have a valid identity (2), we must define an action • : S × V → V such that

π(s1, s2, s3, . . . ) = (s1 · . . . · sn) • π(sn+1, sn+2, sn+3, . . . ) (4)

for each sequence s1, s2, s3, · · · ∈ SN and n ≥ 1. The action must have this property, as a special case for
n = 1:

s • π(x) = π(s ◦ x) for all s ∈ S and x ∈ SN. (5)

That means • must be the image of ◦ under π. According to Lemma 1(a), such an image exists if and
only if π is compatible with ◦, that is,

π(x) = π(y) ⇒ π(s ◦ x) = π(s ◦ y) for all x,y ∈ SN and s ∈ S. (6)

The action • defined by (5), if it exists, is in the following called the mixed product induced by π.
If (3) holds, the mixed product satisfies (4) also for n > 1 because π(s1, s2, s3, . . . ) is then equal to
π((s1 · . . . · sn), sn+1, sn+2, sn+3, . . . ).

3.3 Consistency with semigroup product

As just shown, an ω-product invariant under contractions and compatible with prefixing satisfies the
extended associativity rules (1) and (2) with a suitable interpretation of operators. However, this inter-
pretation is ambiguous if the value of ω-product (sn+1 · sn+2 · sn+3 · . . . ) in (2) is an element of S. In
that case, the middle operator could either be the semigroup product or the mixed product. To avoid
the ambiguity, we want these two products to be identical, that is, we require:

s • t = s · t for all s, t ∈ S. (7)

By definition (5) of mixed product, this is equivalent to:

π(s ◦ x) = s · π(x) for all s ∈ S and x ∈ SN such that π(x) ∈ S. (8)

This condition implies that S ∩ V must be a left ideal of S.

3.4 Associative ω-product

In the following, an ω-product (V, π) on a semigroup (S, · ) is called associative if it has these three
properties:

(A1) x ◃ y ⇒ π(x) = π(y) for all x,y ∈ SN.
(A2) π(x) = π(y) ⇒ π(s ◦ x) = π(s ◦ y) for all x,y ∈ SN and s ∈ S.
(A3) π(s ◦ x) = s · π(x) for all s ∈ S and x ∈ SN such that π(x) ∈ S.

We recall that (A1) and (A2) were chosen to ensure validity of arbitary equations of the form (1) and
(2); (A3) ensures that (2) is not ambiguous. Notice that (A3) implies (A2) whenever π(x) ∈ S.

3



3.5 Relation to Perrin-Pin ω-semigroup

Perrin and Pin [10–12] define an ω-semigroup as a two-sorted algebra (S, V, ·, •, π) on disjoint sets S and
V , with three operations:

– finite product · : S × S → S,
– mixed product • : S × V → V ,
– infinite product π : SN → V .

The operations have these properties:

(PP1) (S, · ) is a semigroup.
(PP2) (s · t) • u = s • (t • u) for all s, t ∈ S, u ∈ V .
(PP3) x ◃ y ⇒ π(x) = π(y) for all x,y ∈ SN.
(PP4) π(s ◦ x) = s • π(x) for all s ∈ S and x ∈ SN.

The algebra is complete if the mapping π is surjective.
One can easily see that a complete ω-semigroup Sω = (S, V, ·, •, π) can be alternatively defined as a pair

consisting of a semigroup (S, · ) and an associative ω-product (V, π) on that semigroup, with S ∩ V = ∅.
The infinite product of Sω is the mapping π of (V, π), and the mixed product is the mixed product
induced by π. (PP2) follows from (A1), (A2), and π being surjective; (PP3) is identical to (A1) and
(PP4) follows from (A2).

One can also see that the pair (V, π) of a complete ω-semigroup (S, V, ·, •, π) is an associative ω-product
on (S, · ).

3.6 Extension to subsets

In many applications, it is useful to extend the semigroup product to subsets by defining, for X, Y ⊆ S:

X · Y = {x · y |x ∈ X and y ∈ Y }.

The extended operation is an associative operation on 2S , and defines a new semigroup (2S , · ). An
associative ω-product (V, π) on S can be similarly extended to an ω-product (2V , π) on (2S , · ) by defining,
for a sequence X = X1, X2, X3, . . . of subsets of S:

π(X) = {π(x1, x2, x3 . . . ) |xi ∈ Xi for i ≥ 1}.

Using standard techniques, one can show that if (V, π) is associative, so is its extension (2V , π).

4 Mappings of ω-products

Let (V, π) and (V̄ , π̄) be two associative ω-products on S. We say that mapping φ : V → V̄ is a
homomorphism from (V, π) to (V̄ , π̄) if π̄ = πφ and φ(S ∩ V ) ⊆ S. Because the mapping π̄ in an
ω-product (V̄ , π̄) is surjective, so must be φ. Therefore we speak of (V̄ , π̄) as a homomorphic image
of (V, π).

We say that products (V, π) and (V̄ , π̄) are isomorphic if they are homomorphic images of each other.
Using properties of surjective mappings, one can verify that the two homomorphisms must be then
bijections and inverses of each other, and must map S ∩ V and S ∩ V̄ onto each other.

Written explicitly, π̄ = πφ means that π̄(x) = φ(π(x)) for all x ∈ SN, which is another way of saying
that homomorphism preserves the ω-product. It preserves also the mixed product, and the semigroup
product where applicable:

Proposition 1. Let φ be a homomorphism from (V, π) to (V̄ , π̄). Let • and •̄ be mixed products induced,
respectively, by π and π̄. Then:

(a) φ(s • v) = s •̄φ(v) for all s ∈ S, v ∈ V ,
(b) φ(s · v) = s · φ(v) for all s ∈ S, v ∈ S ∩ V .

Proof. (a) Both π and π̄ are compatible with ◦. As π̄ = πφ, φ is compatible with • by Lemma 1(b). We
have • = ◦π and •̄ = ◦πφ, so, by Lemma 1(c), •̄ is the image of • under φ. This is exactly the stated
property.

(b) Take any s ∈ S and v ∈ S ∩ V . We have φ(v) ∈ S.
From (a) and (7) follows: φ(s · v) = φ(s • v) = s •̄φ(v) = s · φ(v).

4



Proposition 2. Let (V, π) be an associative ω-product inducing mixed product •, and V̄ an arbitrary
set. Let φ : V → V̄ be a surjective mapping compatible with •. The pair (V̄ , πφ) is an ω-product on S
satisfying (A1) and (A2). It is associative if φ also satisfies the condition

φ(s • v) = s · φ(v) for all s ∈ S whenever φ(v) ∈ S. (9)

Proof. Let φ be as stated. Then πφ is a surjective mapping from SN to V̄ , so the pair (V̄ , πφ) is an
ω-product on S. Suppose x ◃ y. From (A1) follows π(x) = π(y) and φ(π(x)) = φ(π(y)), so πφ satisfies
(A1). The mapping π is compatible with ◦, and φ is compatible with • = ◦π. By Lemma 1(b), πφ
is compatible with ◦, that is, πφ satisfies (A2). Condition (9) implies (A3) for πφ: if x is such that
φ(π(x)) ∈ S, we have, by (5) and (9), φ(π(s ◦ x)) = φ(s • π(x)) = s · φ(π(x)).

5 Similar sequences

Define sequences x ∈ SN and y ∈ SN to be similar, written x ∼ y, if there exist sequences z1, z2, . . . , zk,
k ≥ 1, such that z1 = x, zk = y, and zi ◃ zi+1 or zi ▹ zi+1 for 1 ≤ i < k. In other words, ∼ is the
reflexive, symmetric and transitive closure of relation ◃. The equivalence classes of ∼ are in the following
referred to as similarity classes of S. The set SN/∼ of all similarity classes is denoted by Q.

Proposition 3. Similarity is consistent with prefixing.

Proof. Take any s ∈ S and x = x1, x2, x3, · · · ∈ SN.
Let y = x|n for some ascending n = n1, n2, n3, · · · ∈ NN. By definition of x|n:

y = (x1 · . . . · xn1), (xn1+1 · . . . · xn2), . . . ,

s ◦ y = (s), (x1 · . . . · xn1), (xn1+1 · . . . · xn2), · · · = (s ◦ x)|n′,

where n′ = 1, n1 + 1, n2 + 1, n3 + 1, . . . . It follows that x ◃ y ⇒ s ◦ x ◃ s ◦ y. Consider now any
x,y ∈ SN such that x ∼ y. Let z1, z2, . . . , zk be the sequences appearing in the definition of similarity
x ∼ y. According to the above, we have s ◦ zi ◃ s ◦ zi+1 or s ◦ zi ▹ s ◦ zi+1 for 1 ≤ i < k, showing that
s ◦ x ∼ s ◦ y.

As a consequence, ◦ has an image under nat∼. This image is in the following denoted by ◦Q.

From the definition of ∼ follows clearly that (A1) is equivalent to

x ∼ y ⇒ π(x) = π(y) for all x,y ∈ SN. (10)

An associative ω-product is thus fully defined by specifying its value for each similarity class. If this value
is different for different similarity classes, we say that the ω-product is maximal. From x ∼ y ⇔ π(x) =
π(y) and Proposition 3 follows (A2). A maximal product satisfies thus both (A1) and (A2).

6 Free and primary ω-products

The natural mapping nat∼ is a surjective mapping from SN to Q, so the pair (Q, nat∼) is an ω-product
on S. It is clearly maximal, so it satisfies (A1) and (A2). It satisfies (A3) because Q ∩ S = ∅. The
ω-product (Q, nat∼) is thus associative. It induces ◦Q as the mixed product.

Proposition 4. Each associative ω-product on S is a homomorphic image of (Q, nat∼).

Proof. Consider any associative ω-product (V, π) on S. According to (10), π is constant on each class of
∼. By a basic property of quotient sets, there exists a mapping φ : Q → V such that π = nat∼φ. This
mapping is a homomorphism from (Q, nat∼) to (V, π).

The above property is one of the characteristic properties of free objects. With a somewhat stretched
interpretation of sequences in SN as terms in a term algebra over S, one can say that (Q, nat∼) is ”freely
generated” by S with (A1) as the only defining rule. For this reason, (Q, nat∼) is in the following called
the free ω-product on S.

5



We note that each associative ω-product having the property stated by Proposition 4 is isomorphic to
(Q, nat∼). If each associative ω-product is a homomorphic image of (V, π), so is, in particular, (Q, nat∼),
and these two products are homomorphic images of each other.

Because isomorphic objects are often considered ”the same”, we loosely refer to any ω-product isomor-
phic to (Q, nat∼) as ”a free ω-product” on S. One can easily see that an ω-product is such a free product
if and only if it is maximal and does not assume values from S.

Let ≈ be an equivalence on Q compatible with ◦Q. Let K = Q/ ≈ and κ = nat∼nat≈. As nat≈
is compatible with ◦Q and K ∩ S = ∅, the pair (K,κ) is, according to Proposition 2, an associative
ω-product on S. In the following, each such pair (K,κ) is called a primary ω-product on S.

Proposition 5. Each associative ω-product on S is a one-to-one homomorphic image of a primary
ω-product on S.

Proof. Consider any associative ω-product (V, π) on S. Let φ be the homomorphism from (Q, nat∼) to
(V, π) stated by Proposition 4. Define ≈ to be the kernel of φ, that is, q1 ≈ q2 ⇔ φ(q1) = φ(q2). Denote
Q/≈ by K. By a basic property of kernel, there exists a bijection ψ : K → V such that φ = nat≈ψ. We
have this situation:

?

-

?
�

�
�

�
��	

SN Q = SN/ ∼

V K = Q/ ≈

π

nat∼

nat≈
φ

ψ

As remarked in the proof of Proposition 1(a), φ is compatible with ◦Q. This is identical to ≈ being
compatible with ◦Q. The pair (K, nat∼nat≈) is thus a primary ω-product on S. The bijection ψ is, by
our definition, a homomorphism from that ω-product to (V, π).

It is convenient to think of Q/≈ as a partition of Q. Proposition 5 shows that all associative ω-products
on S are obtained by assigning different values to classes of a partition of Q consistent with ◦Q. The set Q
is fully determined by the semigroup S, and so is the action ◦Q. This latter determines all the consistent
partitions of Q, and thus (up to the choice of values) all associative ω-products on S.

7 Similarity classes in selected cases

7.1 Similar sequences in a free semigroup

We recall that a semigroup (S, · ) is free if it has a subset G ⊂ S of generators such that each element of
S can be represented in a unique way as a product of n ≥ 1 generators.

Let (S, · ) be a free semigroup. Given a sequence x ∈ SN, represent each element of x as the unique
product of generators: x = (g1 · . . . · gn1), (gn1+1 · . . . · gn2), (gn2+1 · . . . · gn3), . . . . The sequence
g = g1, . . . , gn1 , gn1+1, . . . , gn2 , gn2+1, . . . , gn3 , . . . of generators appearing in this representation is in
the following called the generating sequence of x. One can easily see that this sequence g is unique, that
x is a contraction of g, and that g is not changed by a contraction of x.

Proposition 6. If (S, · ) is a free semigroup, sequences x ∈ SN and y ∈ SN are similar if and only if
they have the same generating sequence.

Proof. Suppose x and y have the same generating sequence, g. We have then x ▹ g ◃ y, so x ∼ y.
Suppose now that x ∼ y. Let zi, 1 ≤ i ≤ k be the sequences in definition of their similarity. Because

generating sequences are unique, and contractions do not change the generating sequence, all of them
have the same generating sequence.

The similarity classes in a free semigroup correspond thus to different sequences of generators.
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7.2 Similar sequences in a free monoid

A semigroup (S, · ) is a monoid if it contains a unit element, usually denoted by 1, such that s·1 = s = 1·s
for each s ∈ S. A monoid (S, · ) is free if it has a subset G ⊂ S of generators such that each element of
S − {1} can be represented in a unique way as a product of n ≥ 1 generators, and 1 is not a product of
any elements in S − {1}.

Let (S, · ) be a free monoid. Given a sequence x ∈ SN, represent each element of x other than 1 as
the unique product of generators. Let g be the sequence of generators appearing in this representation.
If g is infinite, define the generating sequence of x to be g. If g is finite (which is the case when x
ends with 1N), define the generating sequence of x to be g followed by 1N. One can easily see that the
generating sequence is unique, that x is similar to its generating sequence, and that generating sequence
is not changed by a contraction of x. The following is proved in the same way as Proposition 6:

Proposition 7. If (S, · ) is a free monoid, sequences x ∈ SN and y ∈ SN are similar if and only if they
have the same generating sequence.

The similarity classes in a free monoid correspond thus to different finite or infinite sequences of
generators.

7.3 Similar sequences in a group

We recall that a monoid (S, · ) is a group if each element s ∈ S has the inverse element s−1 ∈ S such
that s · s−1 = 1 = s−1 · s.

Proposition 8. If (S, · ) is a group, all sequences in SN are similar.

Proof. We show that all sequences are similar to 1N.
Consider any sequence x = x1, x2, x3, · · · ∈ SN. We have:

x1, x2, x3, · · · =

x1, (x
−1
1 · x1 · x2), (x−1

2 · x−1
1 · x1 · x2 · x3), (x−1

3 · x−1
2 · x−1

1 · x1 · x2 · x3 · x4), . . .

▹ x1, x
−1
1 , x1, x2, x

−1
2 , x−1

1 , x1, x2, x3, x
−1
3 , x−1

2 , x−1
1 , x1, x2, x3, x4, . . .

◃ (x1 · x−1
1 ), (x1 · x2 · x−1

2 · x−1
1 ), (x1 · x2 · x3 · x−1

3 · x−1
2 · x−1

1 ), . . .

= 1N.

Any associative ω-product on a group is thus trivial.

7.4 Similar sequences in a finite semigroup

A semigroup (S, · ) is finite if S is a finite set. The fundamental fact about finite semigroups is:

Proposition 9. If (S, · ) is a finite semigroup, each sequence in SN has a contraction of the form s ◦ eN
for some e and s in S such that e · e = e and s · e = s.

Proof. Consider any sequence x ∈ SN. For each s ∈ S, let C(s) be the set of all pairs (p, q) of natural
numbers p < q such that x(p+1) · . . . ·x(q) = s. If S is finite, the classes C(s) constitute a finite partition
of the set of all pairs of natural numbers. By a combinatorial result of Ramsey (Theorem A in [15]),
there exists an infinite subset Ne ⊂ N such that all pairs (p, q) where p, q ∈ Ne belong to the same class
C(e) for some e ∈ S.

Let n = n1, n2, n3, . . . consist of all elements of Ne in ascending order. Let y = x|n. By the choice of
n, we have y(i) = x(ni−1 + 1) · . . . · x(ni) = e for all i > 1. Denoting y(1) by x, we have x ◃ x, e, e, e, . . .
.

By the choice of n, we have also e = x(n1 + 1) · . . . · x(n2) · x(n2 + 1) · . . . · x(n3) = e · e.
If x, e, e, e, . . . is a contraction of x, so is the sequence (x · e), e, e, e, . . . . Denoting x · e by s, we have

x ◃ s, e, e, e, . . . , where s · e = x · e · e = x · e = s.
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(This fact has been exploited in practically all work with automata on infinite words. It seems to
appear for the first time in 1960 in a paper by Büchi [3]. Lemma 1 in that paper states that an infinite
word can be divided into finite words belonging to the seme class. It is proved there using Ramsey’s
theorem; the idea is credited to a discussion with J. B. Wright. All subsequent formulations are in terms
of a homomorphism from an infinite word into a finite semigroup. The form s ◦ eN seems to appear for
the first time in 1973 in a paper by Schützenberger [18]. It is proved there by induction on the number
of different values of products of partial sequences x(i) · . . . · x(j). A proof by induction on the number
of different elements x(i) can be found in [9]. A non-inductive proof was given in 1981 by Thomas [22];
it appears also in [10] and [12].)

An element e ∈ S such that e · e = e is called an idempotent. A pair (s, e) with idempotent e and
s · e = s is called a linked pair. We write x ◃ (s, e) to mean (s, e) is a linked pair such that x ◃ s ◦ eN.

For a semigroup (S, · ), let S1 denote the set S if (S, · ) is a monoid. Otherwise, let S1 = S ∪{1} where
s · 1 = s = 1 · s for each s ∈ S. Linked pairs (s1, e1) and (s2, e2) are said to be conjugated if there exist
x, y ∈ S1 such that e1 = x · y, e2 = y · x, s2 = s1 · x.

One can easily verify that conjugation is an equivalence relation in the set of linked pairs. The equiv-
alence classes of that relation are in the following referred to as conjugation classes.

Proposition 10. Let (s1, e1) and (s2, e2) be two linked pairs. If (s1, e1) ▹ x ◃ (s2, e2) for some x ∈ SN,
(s1, e1) and (s2, e2) are conjugated.

Proof. Let x = x1, x2, x3, . . . . Suppose (x|n1) = s1 ◦ eN1 and (x|n2) = s2 ◦ eN2 for some n1,n2 ∈ NN.
Consider triples i < j < k such that i and k are in n1, and j is in n2. Associate with each such triple a
pair (a, b) ∈ S × S where a = xi+1 · . . . · xj and b = xj+1 · . . . · xk. There are infinitely many such triples
that are disjoint, that is, the elements of one triple are either all greater than, or all less than, all elements
of another. Because S is finite, there are only finitely many different pairs (a, b). Hence, at least one such
pair must be associated with at least two disjoint triples, and there must exist i < j < k < p < q < r such
that i, k, p, r are in n1, j, q are in n2, and xi+1 · . . . ·xj = xp+1 · . . . ·xq = a, xj+1 · . . . ·xk = xq+1 · . . . ·xr = b.
We have this situation:

x = x1, . . . , xi, . . . , xj , . . . , xk, . . . , xp, . . . , xq, . . . , xr, . . . , .

-� -�s2 e2

-� -� -� -� -� -�s1 a b e1 a b

-� e1

It follows that:

xi+1 · . . . · xp = e1 = a · b · e1,
xj+1 · . . . · xq = e2 = b · e1 · a,
x1 · . . . · xj = s2 = s1 · a.

Denoting a = x, b · e1 = y, we have s2 = s1 · x, e1 = x · y, e2 = y · x.

(The earliest appearance of terms ”linked pair” and ”conjugated pairs” in a generally available publi-
cation seems to be in [24]. Proposition 10, stated as a property of homomorphisms, appears in [25], where
it is credited to Ph.D. thesis of J-P. Pécuchet from 1987. The proof given here is a slightly simplified
version of proof from [12].)

Proposition 11. If (S, · ) is a finite semigroup, sequences x ∈ SN and y ∈ SN are similar if and only if
x ◃ (s1, e1) and y ◃ (s2, e2) for linked pairs (s1, e1) and (s2, e2) in the same conjugation class.
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Proof. Consider any x,y ∈ SN. By Proposition 9, x ◃ (s1, e1) and y ◃ (s2, e2) for some linked pairs
(s1, e1) and (s2, e2). Suppose these linked pairs are conjugated. Let x, y be those in the definition of their
conjugation. We have then

x = s1, e1, e1, e1, · · · = (s2 · y), (x · y), (x · y), . . . ▹
s2, y, x, y, x, y, . . . ◃
(s2), (y · x), (y · x), (y · x), · · · = s2, e2, e2, e2, · · · = y ,

showing that x ∼ y.
Suppose now x ∼ y. Let z1, z2, . . . , zk be the sequences in the definition of their similarity. A sequence

of the form s ◦ eN can only be contracted to itself; with ◃ being transitive, we must have

(s1, e1) ▹ z′1 ◃ z′2 ▹ . . . ◃ zn−1 ▹ z′n ◃ (s2, e2)

where sequences z′1, . . . , z
′
n ∈ SN are some, or all, of z1, . . . , zn. Using Proposition 9 and transitivity of ◃,

we can replace every second z′i by a linked pair (s′i, e
′
i). The stated result follows from Proposition 10.

Similarity classes in a finite semigroup correspond thus to conjugation classes of linked pairs. The
number of distinct linked pairs, and thus the number of conjugation classes, cannot exceed mn, where m
is the number of elements of S, and n is the number of idempotents of S. Consequently, an associative
ω-product on a finite semigroup can assume at most mn distinct values and is finitely specified.

8 Infinite product defined as limit

As was indicated at the beginning, an ω-product x1 ·x2 ·x3 · . . . need not be the limit of partial products
x1 · x2 · . . . · xn for n → ∞. However, it may be so. Suppose S is a subset of topological space T that
defines the notions of convergence and limit. The limit of a convergent sequence x ∈ TN is in the following
denoted by lim(x). (We assume that T is a Hausdorff space, implying that each sequence has at most
one limit.)

For a sequence x = x1, x2, x3, · · · ∈ SN, let x̂ denote the sequence of its partial products, that is,
x̂(i) = x1 · x2 · . . . · xi for i ≥ 1. Suppose x̂ is convergent for each x ∈ SN. For each such x, define
π(x) = lim(x̂). The pair (V, π) where V = { lim(x̂) |x ∈ SN} is an ω-product on S.

This product satisfies (A1): if x ◃ y, the sequence of partial products of y is a sub-sequence of x̂, and
converges to the same limit as x̂.

Conditions (A2) and (A3) translate into a condition that the semigroup product has an extension to
action · : S × T → T , continuous in the sense that for each convergent x = x1, x2, x3, · · · ∈ SN, the
sequence s · x = s · x1, s · x2, s · x3, . . . converges to s · lim(x). This extension restricted to S × V is the
mixed product induced by π.

9 Infinite product in presence of left zeros

An element z ∈ S is a left zero if z · s = z for all s ∈ S. The set of left zeros of S is in the following
denoted by Z. We note that if z is a left zero, so is s · z for all s ∈ S: (s · z) · t = s · (z · t) = s · z.

Let x = x1, x2, x3, · · · ∈ SN contain a left zero, that is, xp ∈ Z for some p ≥ 1. Then, the partial
product x1 · x2 · . . . · xn for each n ≥ p is equal to x1 · x2 · . . . · xp ∈ Z. This value is in the following
denoted by ζ(x). Note that it does not depend on p being the smallest one with xp ∈ Z.

Let y = y1, y2, y3, . . . be any contraction of x. It must contain an element yq = xi · . . . · xp · . . . · xj ,
i ≤ p ≤ j, which is a left zero. One can easily see that each partial product y1 · y2 · . . . · yn with n ≥ q is
equal to ζ(x), meaning that x ◃ y ⇒ ζ(x) = ζ(y).

Suppose (V, π) is an associative ω-product on S with V ⊆ S. Let x be as before. From (A3) follows
then π(x) = (x1 · . . . · xp) · (xp+1 · xp+2 · . . . ) = ζ(x). That means, π(x) is in such case uniquely defined
as ζ(x) for each x ∈ SN containing left zero.

Proposition 12. Let (V, π) be any ω-product on S (not necessarily with V ⊆ S) such that π(x) = ζ(x)
for each x ∈ SN that contains left zero, and (A1)–(A3) hold for all sequences in SN that do not contain
left zero. The product is associative.
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Proof. As noted before, x ◃ y ⇒ ζ(x) = ζ(y) for x containing left zero, so (A1) holds for all such
sequences. It holds for the remaining sequences by assumption.

We have further π(x) ∈ S and π(s ◦x) = s · ζ(x) = s · π(x) for x containing left zero, so (A3) holds for
all such sequences. It holds for the remaining sequences by assumption.

Take any x,y ∈ SN such that π(x) = π(y). If any of x,y contains left zero, both products have value
in S and (A2) is implied by (A3). If none of them contains left zero, (A2) holds by assumption.

10 Examples

Example 1. (Finite case). Let S = ({0, 1}, · ), where · is multiplication of integers. Both elements of S
are idempotents, so there are four pairs (s, e). One of them, (1, 0), is not a linked pair because 1 · 0 ̸= 1.
The remaining three are linked pairs, and none of them are conjugated, so S has three similarity classes,
corresponding to the pairs (0, 0), (0, 1), (1, 1). Let these pairs denote the corresponding classes. The
class (0, 0) consists of all sequences with infinitely many zeros. The class (0, 1) consists of all sequences
with finitely many zeros, and the class (1, 1) contains only the sequence 1N. The action ◦Q and all the
partitions of Q consistent with it are:

◦Q (0, 0) (0, 1) (1, 1)

0 (0, 0) (0, 1) (0, 1)
1 (0, 0) (0, 1) (1, 1)

(0, 0) (0, 1) (1, 1)

(0, 0) (0, 1) (1, 1)

(0, 0) (0, 1) (1, 1)

(0, 0) (0, 1) (1, 1)

For x ∈ {0, 1}N, define π(x) = a if x contains infinitely many zeros, π(x) = 0 if x contains finitely
many zeros, and π(x) = 1 if x does not contain zeros. The pair ({a, 0, 1}, π) is an ω-product on S. The
three values of π correspond to the similarity classes of S, so the product is maximal and satisfies (A1),
(A2). To verify (A3), replace (0, 1) and (1, 1) in the table for ◦Q by 0 and 1, respectively. The sub-
table corresponding to them becomes a correct multiplication table for the semigroup S. The ω-product
({a, 0, 1}, π) is thus associative.

Define now π′(x) = a if x contains infinitely many zeros, and π′(x) = b otherwise. The pair ({a, b}, π′)
is an ω-product on S. It has value a on the similarity class (0, 0), and b on the similarity classes (0, 1)
and (1, 1). The partition of Q into {(0, 0)} and {(0, 1), (1, 1)} is consistent with ◦Q, so π′ satisfies (A1)
and (A2). It satisfies (A3) because of {0, 1} ∩ {a, b} = ∅. The ω-product ({a, b}, π′) is associative.

Example 2. (Finite case with conjugated pairs). Let S = ({a, b}, · ), where a · a = a · b = a and
b · a = b · b = b. Both elements of S are idempotents, so there are four pairs (s, e): (a, a), (a, b), (b, a),
(b, b). All of them are linked pairs; (a, a) is conjugated with (a, b), and (b, a) is conjugated with (b, b).
The semigroup S has thus two similarity classes, corresponding to pairs (a, a) and (b, b). They consist of
sequences starting, respectively, with a and b.

For x ∈ {a, b}N, define π(x) = a if x starts with a, and π(x) = b if x starts with b. This assignment is
a bijection from Q, and (A3) is easily verified. The product is associative.

Example 3. (Concatenation of words from A+). Let A be a finite alphabet, A+ the set of all finite
nonempty words over A, and Aω the set of all infinite words over A. Let S = (A+, · ), where · is
concatenation of words. For x = w1, w2, w3, . . . ∈ (A+)N, define π(x) to be the sequence of letters
appearing in the words w1, w2, w3, . . . . The pair (Aω, π) is an ω-product on S.
S is a free semigroup with A as the set of generators. As found in Section 7.1, similarity classes of

S correspond to different generating sequences. The value of π(w1, w2, w3, . . . ) is just the generating
sequence of w1, w2, w3, . . . ; the product π is thus maximal. It is free because Aω ∩A∗ = ∅.

An equivalence on Aω compatible with ◦ is often referred to as a left congruence on Aω. The primary
ω-products (K,κ) on S = (A+, · ) correspond thus to different left congruences on Aω, the members of K
being the congruence classes. Left congruences are related to so-called finite-state ω-languages (cf. [20]).
As shown in [8], a subset of Aω is finite-state if and only if it is a union of classes of a left congruence with
a finite index. Finite-state languages correspond thus to subsets of finite primary products on (A+, · ).
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Example 4. (Free concatenation of words from A∗). Let A be a finite alphabet, and A∗ the set of all
finite words over A, including the empty word ε. Let Aω be the set of all infinite words over A. Let
S = (A∗, · ), where · is concatenation of words.

Let x = w1, w2, w3, . . . be any sequence of words from from A∗. If infinitely many among the words
wi are nonempty, define π(x) to be the sequence of letters appearing in the words w1, w2, w3, . . . . This
sequence is an infinite word. If only finitely many words wi are nonempty, the sequence of letters appearing
in in w1, w2, w3, . . . is finite, and possibly empty. In this case, define π(x) to be that sequence of letters
followed by λ, where λ is a new symbol not in A. The result is a word of the form wλ where w ∈ A∗.
Denote the set of all such words by A∗λ. The pair (A∗λ ∪Aω, π) is an ω-product on S.

The semigroup S is a free monoid with set of generators A and unit ε. As found in Section 7.2, similarity
classes of S correspond to different generating sequences. The values of π(w1, w2, w3, . . . ) in Aω are just
the generating sequences of w1, w2, w3, . . . . The values in A∗λ are in a one-to-one correspondence
with the generating sequences of w1, w2, w3, . . . . The product π is thus maximal. It is free because
(A∗λ ∪Aω) ∩A∗ = ∅.

Example 5. (Natural concatenation of words from A∗). Let A, A∗, Aω, and S be as in Example 4.
For x = w1, w2, w3, . . . ∈ (A∗)N, define π(x) to be the sequence of letters appearing in the words
w1, w2, w3, . . . . This sequence is finite or not, depending on how many among the words wi are nonempty.
The pair (A∗ ∪Aω, π) is an ω-product on S.

The product π is maximal for the same reason as in Example 4. It is not free because it assumes values
from A∗. One can easily see that w ·π(w1, w2, w3, . . . ) = π(w,w1, w2, w3, . . . ) for all w ∈ A∗. That means
π satisfies (A3) and is associative.

The mapping π can also be defined in the way discussed in Section 8, as the limit of w1 · w2 · . . . · wi
for i→ ∞. The topology used for this purpose may be that introduced in [16], where limit is defined as
the least upper bound of a sequence of words ordered by the relation of being a prefix. It may also be
a topology defined by a suitable metric on the set A∗ ∪ Aω. As the ω-product from Example 3 can be
defined in the same way, the product defined here appears as a natural extension of that product.

We note that (A∗ ∪Aω, π) is a homomorphic image of (A∗λ∪Aω, π) from Example 4 under homomor-
phism φ defined by φ(wλ) = w for w ∈ A∗λ and φ(w) = w for w ∈ Aω. Although φ is a bijection, the
two products are not isomorphic because (A∗λ ∪Aω) ∩A∗ = ∅ while (A∗ ∪Aω) ∩A∗ = A∗.

Example 6. (Infinite concatenation of processes). Let A, A∗, A∗λ, and Aω be as in Example 4. Define
A∗ω = A∗λ ∪Aω and A∞ = A∗ ∪A∗λ ∪Aω.

Let the words in A∞ represent runs of a process. A run that terminates after outputting a finite
sequence of symbols from A is represented by that sequence of symbols: a word from A∗. A run that
never terminates and keeps outputting new symbols is represented by the sequence thus produced: a word
from Aω. A run that produces a finite sequence w of symbols, and then goes indefinitely on without
producing more output, is represented by the word wλ. The behavior of a process is the set X ⊆ A∞ of
sequences representing all possible runs of the process.

For words x, y ∈ A∞, define:

x · y =

{
xy if x ∈ A∗,

x otherwise,

where xy is x followed by y. This operation describes a run of two processes arranged so that termination
of the first activates the second; x represents output of the first process, and y output of the second (if
ever started). The operation is associative, so S = (A∞, · ) is a semigroup. The words in A∗ω are left
zeros of S.

Let x = w1, w2, w3, . . . be a sequence of words from A∞. If all words wi are in A∗, define π(x) in the
same way as in Example 4. If wk ∈ A∗ω for some k ≥ 1, define π(x) = w1 · . . . · wk.

The pair (A∗ω, π) is an ω-product on S. It is associative by Proposition 12.
The extension of · to subsets of A∞ represents behavior of two processes where termination of the first

activates the second. If X is behavior of the first process and Y of the second, behavior of the composite
process is X · Y (under assumption that processes do not communicate otherwise). The extension of π
to subsets represents behavior of a sequence of processes where termination of one triggers the next: if
Xi is behavior of the i-th process, π(X1, X2, X3, . . . ) is behavior of the composite process.
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Example 7. (Infinite Therien product). The product X · Y from Example 6 does not correctly describe
the concatenation of processes if the set Y may be empty (meaning the second process has no valid runs).
Namely, X ·∅ = ∅, even if X contains infinite runs where the control never reaches the second process.
The same applies to the ω-product, which becomes empty if any of Xi is empty.

In [21], Therien suggested a new operation on subsets X,Y ⊆ A∞ that correctly describes the concate-
nation in presence of empty behavior. This operation, adapted to our example, is:

X̂Y =

{
X · Y if Y ̸= ∅,
X ∩A∗ω otherwise,

where X · Y is as in Example 6. Using the definition of · , one can verify that ̂ is associative, so
S = (2A

∞
, ̂ ) is a semigroup, with ∅ as one of its left zeros.

Let X = X1, X2, X3, . . . be a sequence of subsets of A∞. If none of Xi is empty, define π̂(X) to be the
same as π(X) in Example 6. If Xk = ∅ for some k, define π̂(x) = X1̂ . . . ̂Xk.

The pair (2A
∗ω

, π̂) is an ω-product on S that correctly describes behavior of a sequential composition
of processes with behaviors X1, X2, X3, . . . that may be empty. This product is associative by Proposi-
tion 12.

Example 8. (Infinite series). Let S = (R+,+), where R+ is the set of all nonnegative real numbers,
and + is addition. For a sequence x = r1, r2, r3, · · · ∈ RN

+, define π(x) to be the sum of the series
r1 + r2 + r3 + . . . if the series converges, or ∞ otherwise.

The pair (R+∪{∞}, π) is an ω-product on S. It is defined as limit of partial sums in the topology of real
numbers supplemented by ∞ as the limit of sequences that increase without a bound. Let ”+” be extended
by defining r+∞ = ∞. With this extension, we have lim(r+r1, r+r2, r+r3, . . . ) = r+ lim(r1, r2, r3, . . . )
for all convergent sequences r1, r2, r3, · · · ∈ RN

+. The ω-product (R+ ∪ {∞}, π) is thus associative.
If R+ is replaced by the set R of all real numbers, some sequences of partial sums do not converge.

One might hope to extend the topology in some way to make them convergent. But {R,+} is a group,
and has, by Proposition 8, only one similarity class. That means one cannot define a useful associative
sum for series on {R,+} in this, or any other, way.

11 Additional topics

11.1 Independence of axioms

It is natural to ask if axioms (A1)–(A3) are independent. The three examples below attempt to answer
this question. The ω-product in Example 9 satisfies (A2) and (A3), but not (A1); therefore, (A1) can
not be implied by them. Similarly, the product in Example 10 satisfies (A1) and (A3), but not (A2);
the product in Example 11 satisfies (A1) and (A2) but not (A3). The axioms (A1)–(A3) are thus in a
general sense independent of each other. However, if S ∩ V is not empty, (A3) implies (A2) whenever
π(x) and π(y) are in S.

Example 9. Let S = ({0, 1}, · ), be the semigroup from Example 1. For a sequence x ∈ {0, 1}N, define
π(0N) = a, π(1N) = 1, otherwise π(x) = 0. The ω-product ({0, 1, a}, π) does not satisfy (A1) because
π(1, 0, 0, . . . ) ̸= π((1 · 0), 0, 0, . . . ). It satisfies (A2) and induces this mixed product: 0 • a = a, 0 • 0 =
0 • 1 = 1 • 0 = 0, 1 • 1 = 1. We have s • v = s · v for all s, v ∈ {0, 1}, so π satisfies (A3) as well.

Example 10. Let S = ({0, 1}, · ), be the semigroup from Example 1. For a sequence x ∈ {0, 1}N, define
π(x) = a if x is in one of the classes (0, 0), (1, 1); otherwise π(x) = b. By its construction, the ω-product
({a, b}, π) satisfies (A1). It also satisfies (A3) because S ∩ V = ∅. However, it does not satisfy (A2)
because π(0N) = π(1N) while π(0 ◦ 0N) ̸= π(0 ◦ 1N).

Example 11. Let S = ({0, 1}, · ), be the semigroup from Example 1. For a sequence x ∈ {0, 1}N, define
π(x) = 1 if x is in one of the classes (0, 0), (0, 1); otherwise π(x) = 0. The partition of the set of similarity
classes into {(0, 0), (0, 1)} and {(1, 1)} is compatible with ◦Q, so the ω-product ({0, 1}, π) satisfies (A1)
and (A2). However, it does not satisfy (A3) because 0 · π(1N) = 0 while π(0 ◦ 1N) = 1.
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11.2 Mixed product does not define ω-product

If the ω-product defines mixed product, one might ask if the opposite is true. We might hope to define
the ω-product in terms of mixed product, for example, by means of infinite factorization

π(x1, x2, x3, . . . ) = (x1 • (x2 • (x3 • (. . . )))).

The following example shows that different associative ω-products may induce the same mixed product.

Example 12. Let S = ({0, 1, 2}, · ), where s1 · s2 = min(s1, s2).
S has six similarity classes: (0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2). For a sequence x ∈ {0, 1, 2}N, define:

π′(x) = a if x is in one of the classes (1, 1), (1, 2), (2, 2); otherwise π′(x) = b.

π′′(x) = a if x is in one of the classes (1, 2), (2, 2); otherwise π′′(x) = b.

The mappings π′ and π′′ correspond to these partitions of Q:

{(0, 0), (0, 1), (0, 2)} {(1, 1), (1, 2), (2, 2)};

{(0, 0), (0, 1), (0, 2), (1, 1)} {(1, 2), (2, 2)}.

One can easily verify that both partitions are compatible with ◦Q. Because {0, 1, 2} ∩ {a, b} = ∅, both
ω-products ({a, b}, π′) and ({a, b}, π′′) are associative. They induce the same mixed product, namely:

1 • a = 2 • a = a, 0 • a = 0 • b = 1 • b = 2 • b = b.
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[3] Büchi, J. On a decision method in restricted second-order arithmetic. In Proc. Int. Congr. on
Logic, Math. and Phil. of Sci. 1960 (1962), Stanford Univ. Press, Calif., pp. 1–11.

[4] Carton, O. Mots infinis, ω-semigroupes et topologie. Tech. Rep. Ph.D. thesis, Université Paris 7,
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