
Associative Omega-products of Traces∗

Roman R. Redziejowski

Abstract

The notion of associative infinite product is applied to traces, resulting in an alternative approach to
introducing infinite traces. Four different versions of product are explored, two of them identical to
known definitions of infinite trace.

1 Introduction

Extending binary operation to an infinite sequence of operands is not a new idea. A classical example is
the infinite series, which is such an extension of ”+”. Newer examples are infinite concatenation of words
and concatenation product of an infinite sequence of languages. Some of these extensions are associative,
that is, the result does not change if the factors are grouped by parentheses. Some are not, like the
infinite series in the domain of all real numbers. For a long time, associativity has been exploited in a
rather informal way. But in recent years, the research connecting automata, semigroups, and infinite-word
languages required a more formal treatment of infinite associativity. The infinite products appearing in
that context do not have the intuitive form of being the limit of longer and longer finite products; thus
the need for a precise treatment.
It seems that the first formal treatment of infinite product (shortly: ω-product) was published in [10].

Slightly before, the present author proposed a set of axioms for an associative ω-product in a Dagstuhl
Seminar lecture, of which only an abstract [12] was published. Being applied to finite automata, the
infinite product was mainly studied for finite semigroups. An extensive review can be found in [11].
A recent paper [13] by the present author is a general study of associative ω-products for arbitrary
semigroups.

The present paper applies some results from [13] to the semigroup of finite traces. Traces were intro-
duced in [7] to describe behavior of concurrent systems. A rich theory has been developed since then.
The reader is referred to [9] for a survey. The traces, as originally defined, described finite behavior. In
order to describe systems that never stop, it was necessary to consider infinite traces. Infinite traces were
first introduced in [8]; then, in a different form, independently in [2] and [5]. A complete presentation
can be found in [4].
Intuitively, the result of an infinite product of finite traces should be an infinite trace. We obtain in

this way an alternative approach to defining infinite traces. Unfortunately, associativity alone does not
uniquely define the result of an infinite product. The result can be freely chosen in a number of different
ways, some more meaningful than other. We explore four of possible choices, one of them matching the
definition from [8] and one that from [2,5].

We begin, in Section 2, by recalling the necessary definitions and results from [13]. We discuss associa-
tive ω-products in the general setting of an arbitrary semigroup. In Section 3, we recall basic definitions
and facts concerning traces. In Section 4, we apply the theory from Section 2 to the semigroup of finite
non-null traces. We identify the ”similarity classes” of that semigroup – a basic result needed to construct
associative ω-products. We apply that result in Section 5 to suggest four such products. In Section 6,
we discuss possible extensions of these products to null traces. Section 7 contains some final remarks.

∗Appeared in Fundamenta Informaticae 67 (2005) 175-185.

1

2 Associative ω-products

The set of all natural numbers (positive integers) is in the following denoted by N. A sequence x
of elements of a set S is a mapping x : N → S. It is visualized as a linear arrangement of ele-
ments x(1),x(2),x(3), The set of all sequences of elements of S is denoted by SN. The sequence
s,x(1),x(2),x(3), . . . obtained by adding s ∈ S in front of sequence x ∈ SN is denoted by s,x.
A semigroup is a pair (S, ·) where S is a set, and · is an associative operation on S, referred to as the

semigroup product.
An ω-product on (S, ·) is a mapping π from SN to some set V of values. These values may belong to

S (as in the case of infinite series), or be outside S (as in the case of infinite concatenation of words). As
indicated before, π(s1, s2, s3, . . .) need not be any kind of limit of partial products s1 · s2 · . . . · sn.
It is convenient to write π(s1, s2, s3, . . .) informally as s1 · s2 · s3 · In this form, symbol · denotes

the ω-product, not an operation on two neighboring factors. Informally speaking, we mean that π is
”associative” if it satisfies identities of this kind:

s1 · s2 · s3 · s4 · s5 · s6 . . . = (s1 · s2 · s3) · (s4 · s5 · s6) · . . . , (1)

s1 · s2 · s3 · . . . = (s1 · . . . · sn) · (sn+1 · sn+2 · sn+3 · . . .) . (2)

In (1), we understand the dot within parentheses to mean the semigroup product, and outside parentheses
to mean the ω-product. In (2), the dot within the first pair of parentheses denotes the semigroup product;
within the second pair, it denotes the ω-product. The dot in the middle stands for an operation S×V → V
defined by s · π(x) = π(s,x) and called the mixed product.
In order to express (1) more precisely, we define, for x = s1, s2, s3, . . . ∈ SN and ascending

n = n1, n2, n3 . . . ∈ NN, the sequence x|n as:

x|n = (s1 · . . . · sn1), (sn1+1 · . . . · sn2), (sn2+1 · . . . · sn3), (3)

For example: (s1, s2, s3, . . .)|(1, 3, 4, 6, . . .) = (s1), (s2 · s3), (s4), (s5 · s6),

Formally, we say that ω-product π : SN → V is associative if it has these three properties:

(A1) π(x) = π(x|n) for all x ∈ SN and ascending n ∈ NN .

(A2) π(x) = π(y) ⇒ π(s,x) = π(s,y) for all x,y ∈ SN and s ∈ S .

(A3) π(s,x) = s · π(x) for all s ∈ S and x ∈ SN such that π(x) ∈ S .

Property (A1) states validity of all equations of form (1); (A2) ensures that mixed product is uniquely
defined, and (A3) ensures that (2) is not ambiguous.
Our purpose is to construct associative ω-products by choosing values of π(x) for different sequences

x ∈ SN. According to (A1) we must have π(x) = π(y) whenever x and y can be transformed into each
other in a finite number of steps using the operation defined by (3). In the following, such sequences x,y
are called similar, written x ∼ y. More precisely, x ∼ y means that there exist sequences z1, z2, . . . , zk
in SN and ascending sequences n1,n2, . . . ,nk−1 of natural numbers such that x = z1, y = zk, and either
xi|ni = xi+1 or xi = xi+1|ni for 1 ≤ i < k. The relation ∼ is obviously an equivalence in SN; its
equivalence classes are referred to as the similarity classes of (S, ·).
An ω-product satisfying (A1) is obtained by assigning an arbitrary value to each similarity class q and

using it as π(x) for each x ∈ q. If values thus assigned to different q are distinct, meaning x ∼ y ⇔
π(x) = π(y) for all x,y ∈ SN, π satisfies both (A1) and (A2). If, in addition, none of the assigned values
is in S, π satisfies all of (A1)–(A3).

2

3 Words and traces

An alphabet A is a finite nonempty set of letters. A word is a finite or infinite string of letters. The number
of letters in a finite word is called its length. The word of length 0 (string of no letters) is called the
null word and is denoted by ε. Words are otherwise denoted by (possibly subscripted) letters u, v, x, y, z,
with u and v reserved for infinite words. The set of finite words, including ε, is denoted by A∗, the set of
infinite words by Aω, and the set of all words by A∞.
Concatenation of words x ∈ A∗ and y ∈ A∞ is the word obtained by appending y at the end of x.

It is denoted by xy. The infinite word obtained by joining an infinite sequence of finite non-null words
x1, x2, x3, . . . one after another is denoted by x1x2x3
Word y ∈ A∗ is a prefix of word x ∈ A∞, denoted y ≤ x, if x = yz for some z ∈ A∞.

Traces are equivalence classes of certain congruence≡ on the semigroup (A∗, ·), where · is concatenation
of words. This congruence is defined by independence relation I ⊆ A × A as the smallest congruence ≡
such that (a, b) ∈ I ⇒ ab ≡ ba. The independence relation and the congruence defined by it remain fixed
for the rest of the paper. The set of all traces is denoted by T . The trace containing word x ∈ A∗ is
denoted by [x]. All words in [x] are certain permutations of letters in the word x, and thus all have the
same length. This is the length of [x].
Relation ≡ being a congruence means that there exists quotient operation · , the trace product, defined

by [x] · [y] = [xy] for [x], [y] ∈ T . The trace product is obviously associative. It satisfies left-cancellation
law: [x] · [y] = [x] · [z] ⇒ [y] = [z] for [x], [y], [z] ∈ T .
Trace [y] ∈ T is a prefix of trace [x] ∈ T , denoted [y] ≤ [x], if [x] = [y] · [z] for some [z] ∈ T . We note

that for x, y ∈ A∗, y ≤ x implies [y] ≤ [x], and [y] ≤ [x] implies y ≤ z for some z ∈ [x].

The prefix relations ≤ on A∗ and T are partial orders on the respective sets. Because we consider
only finite word prefixes, ≤ is not a partial order on all of A∞, but it is still transitive whenever defined.
We apply few standard concepts from order theory (see, for example, [1]) to prefix relations on A∞

and T . They apply generally to a set D with a transitive relation ≤ . For a subset P ⊆ D, we define
↓ P = {r ∈ D | r ≤ p for some p ∈ P}, and abbreviate ↓{p} as ↓p. Subset P ⊆ D is a lower set if
P = ↓P ; it is directed if for each r, s ∈ P exists p ∈ P such that r ≤ p and s ≤ p. A directed lower set is
an ideal. An element of P is maximal if it is not a prefix of any other element of P .
The use of common notation should not cause ambiguities, as traces are always written in the form [x]

with x ∈ A∗, easily distinguishable from words. The only possible exception is the set ↓ [x]. Here, [x] is
always treated as a member of T , not as set of words; ↓ [x] is thus always a set of traces.

4 Similar sequences of traces

As it will be shown in Section 6, the null trace [ε] causes complications and gives rise to special cases.
Therefore we shall only consider ω-products on the semigroup T = (T+, ·) where T+ = T − [ε]. We
start by identifying the similarity classes of T. For this purpose, we define the signature of a sequence
[x1], [x2], [x3], . . . ∈ TN

+ as:

sign([x1], [x2], [x3], . . .) =
∪
i≥1

↓ [x1x2 . . . xi] . (4)

Let now x = [x1], [x2], [x3], . . . and y = [y1], [y2], [y3], . . . be two arbitrary sequences from TN
+.

Lemma 1. For any ascending n = n1, n2, n3, . . . ∈ NN, we have y = x|n if and only if
[y1 . . . yi] = [x1 . . . xni] for i ≥ 1.

Proof. Suppose y = x|n. From (3) follows immediately [y1 . . . yi] = [x1 . . . xni] for all i ≥ 1.
Suppose now that [y1 . . . yi] = [x1 . . . xni] for all i ≥ 1.
For each i > 1 we have [y1 . . . yi−1] · [yi] = [x1 . . . xni−1

] · [xni−1+1 . . . xni
] .

But [y1 . . . yn−1] = [x1 . . . xni−1] ; thus, by left-cancellation, [yi] = [xni−1+1 . . . xni] . In addition, we have
[y1] = [x1 . . . xn1

] , showing that y = x|n.

Lemma 2. For any ascending n = n1, n2, n3, . . . ∈ NN, y = x|n implies sign(x) = sign(y).

3

Proof. Suppose y = x|n. By Lemma 1, we have [y1 . . . yi] = [x1 . . . xni] for i ≥ 1.
Take any [z] ∈ sign(x). That means [z] ≤ [x1 . . . xj] for some j ≥ 1. As n is ascending, there exists i
such that ni > j. We have then [z] ≤ [x1 . . . xj . . . xni] = [y1 . . . yi], so [z] ∈ sign(y).
Take now any [z] ∈ sign(y); that means [z] ≤ [y1 . . . yi] for some i ≥ 1. But [y1 . . . yi] = [x1 . . . xni], so
[z] ∈ sign(x).

Lemma 3. If sign(x) = sign(y), there exist sequence z = [z1], [z2], [z3], . . . ∈ TN
+ and ascending sequences

n = n1, n2, n3, . . . ∈ NN, m = m1,m2,m3, . . . ∈ NN such that [x1 . . . xni] = [z1 . . . z2i−1] and [y1 . . . ymi] =
[z1 . . . z2i] for i ≥ 1.

Proof. Suppose sign(x) = sign(y). The required sequences can be constructed as follows.

Take any n1 ≥ 1 and define [z1] = [x1 . . . xn1]. Clearly, [z1] ∈ sign(x). As sign(x) = sign(y), we have
[z1] ≤ [y1 . . . yj] for some j ≥ 1. Define m1 = j + 1. We have then [y1 . . . yjym1] = [z1] · [z2] for some
[z2] ̸= [ε]. The [z1], [z2], n1, m1 thus obtained are the required elements of z,n, m for i = 1.

Suppose the required elements of n,m, and z have been constructed up to some i ≥ 1. In particular, we
have [z1], . . . , [z2i] and mi such that [z1 . . . z2i] = [y1 . . . ymi].
Clearly, [z1 . . . z2i] ∈ sign(y). As sign(y) = sign(x), we have [z1 . . . z2i] ≤ [x1 . . . xk] for some k ≥ 1.
Define ni+1 to be the greater of k + 1 and ni + 1. We have then [x1 . . . xk . . . xni+1] = [z1 . . . z2i] · [z2i+1]
for some [z2i+1] ̸= [ε].
Clearly, [z1 . . . z2i+1] ∈ sign(x). As sign(x) = sign(y), we have [z1 . . . z2i+1] ≤ [y1 . . . yj] for some j ≥ 1.
Define mi+1 to be the greater of j+1 and mi+1. We have then [y1 . . . yj . . . ymi+1] = [z1 . . . z2i+1] · [z2i+2]
for some [z2i+2] ̸= [ε]. The [z2i+1], [z2i+2], ni+1, mi+1 thus obtained are the required elements of z,n, m
for i+ 1.

Proposition 1. x ∼ y if and only if sign(x) = sign(y).

Proof. Suppose x ∼ y. Let z1, z2, . . . , zn be the sequences in the definition of x ∼ y. By Lemma 2, all
these sequences have identical signatures.

Suppose now that sign(x) = sign(y). Let n,m, z be as stated by Lemma 3. Define p = 1, 3, 5, . . . and
q = 2, 4, 6, By Lemma 1, we have x|n = z|p and z|q = y|m, showing that x ∼ z ∼ y.

To close this section, we note an important special case:

Proposition 2. Any sequences x = [x1], [x2], [x3], . . . ∈ TN
+ and y = [y1], [y2], [y3], . . . ∈ TN

+ such that
x1x2x3 . . . = y1y2y3 . . . are similar.

Proof. Equality of infinite words x1x2x3 . . . and y1y2y3 . . . means that they are the same sequence
a1a2a3 . . . of letters ai. There exist sequences n = n1, n2, n3, . . . ∈ NN and m = m1,m2,m3, . . . ∈ NN

such that:

x1 = a1 . . . an1 , x2 = an1+1 . . . an2 , x3 = an2+1 . . . an3 , . . . ,

y1 = a1 . . . am1 , y2 = am1+1 . . . am2 , y3 = am2+1 . . . am3 ,

Let a = [a1], [a2], [a3], One can easily see that a|n = x and a|m = y, so x ∼ y.

5 Associative ω-products of traces

As defined in Section 2, an associative ω-product on T = (T+, ·) is a mapping π : TN
+ → V that satis-

fies (A1)–(A3). Following the convention introduced there, we can write π([x1], [x2], [x3], . . .) informally as
[x1] · [x2] · [x3] · From Proposition 2 follows that an associative product
[x1] · [x2] · [x3] · . . . is uniquely defined by the word x1x2x3 . . . , so it can be denoted by [x1x2x3 . . .] .
We can thus write [x1] · [x2] · [x3] · . . . = [x1x2x3 . . .] in analogy to [x] · [y] = [xy] . With such notation,
associativity of π allows identities like these:

[x1x2x3 . . .] = [x1x2] · [x2x3x4] · [x5x6] · . . . ,
[x1x2x3 . . .] = [x1x2] · [x3x4 . . .] .

4

These remarks apply to any associative ω-product of traces. There are many possible such products,
and we are going to explore some of them. As indicated in Section 2, one way to obtain an associative
ω-product is by assigning values to π so that x ∼ y ⇔ π(x) = π(y) and π(x) /∈ T+ for x,y ∈ TN

+. We
consider four different such assignments, resulting in four different versions of associative ω-product.

5.1 Version 1: set of traces as value

According to Proposition 1, similarity classes of T consist of sequences x having the same signature.
The simplest way of assigning distinct values to different similarity classes is to use that signature as the
value. Following this idea we define, for x ∈ TN

+:

π1(x) = sign(x) . (5)

The mapping π1 : TN
+ → 2T is an ω-product on T. It satisfies x ∼ y ⇔ π1(x) = π1(y) by Proposition 1.

As sign(x) is a set of traces, we have π1(x) /∈ T+, and π1 is associative.
Intuitively, the product of infinitely many traces should be an infinite trace. And indeed, when infinite

trace was introduced for the first time by Mazurkiewicz in [8], it was defined as a set of traces; more
precisely, as an infinite ideal of T . We proceed to show that values of our infinite product are exactly the
infinite traces in that sense.

Proposition 3. The values of π1(x) for x ∈ TN
+ are exactly the infinite ideals of T .

Proof. (1) For each x ∈ TN
+, sign(x) is an infinite ideal of T .

Take any x = [x1], [x2], [x3], . . . ∈ TN
+, and denote P = sign(x). For each i ≥ 1, P has a member of length

i or greater, namely [x1 . . . xi]; it is thus infinite.
Take now any [x] ∈ P and [y] ≤ [x]. We have [y] ≤ [x] ≤ [x1 . . . xi] for some i ≥ 1, so [y] ≤ [x1 . . . xi] and
[y] ∈ P . This shows that P is a lower set.
Finally, take any [x], [y] ∈ P . We have [x] ≤ [x1 . . . xi] for some i ≥ 1, and [y] ≤ [x1 . . . xj] for some
j ≥ 1. Let k be any integer greater than i and j. Denote [z] = [x1 . . . xi . . . xk] = [x1 . . . xj . . . xk] Clearly,
[z] ∈ P , [x] ≤ [z] and [y] ≤ [z]. This shows that P is directed.

(2) Each infinite ideal of T is the signature of some sequence x ∈ TN
+.

Let P be any infinite ideal of T . Denote by Pn the set of all members of P having length n or less.
Because the alphabet A is finite, so is Pn. From P being an infinite lower set follows that Pn ̸= ∅ for all
n ≥ 0. Using the fact of P being directed, one can find for every n ≥ 0 an element [yn] ∈ P − Pn such
that Pn ⊂↓ [yn]. Using this fact, one can choose n1, n2, n3, . . . such that [yn1] ≤ [yn2] ≤ [yn3] ≤ As
one can easily see, there exists x = [x1], [x2], [x3], . . . ∈ TN

+ such that [x1 . . . xi] = [yni] for all i ≥ 1.
To complete the proof of (2), we verify that P = sign(x). Take first any [z] ∈ P . We have [z] ≤ [yni] for
any ni greater than the length of [z]. But [yni] = [x1 . . . xi], so [z] ∈ sign(x).
Take now any [z] ∈ sign(x). We have [z] ≤ [x1 . . . xi] = [yni] for some i. But [yni] ∈ P , so [z] ∈ P by P
being a lower set.

5.2 Version 2: set of finite words as value

An infinite sequence x of traces is presumably intended to represent some infinite behavior. The traces
that are members of sign(x) would then represent possible initial sequences of events. It may be more
convenient to represent this initial behavior by a set of words rather than set of traces. Following this
idea, we define the word signature of x ∈ TN

+ as the union of members of sign(x):

wsign(x) = {x ∈ A∗ | [x] ∈ sign(x)} , (6)

and use it as the value of new ω-product:

π2(x) = wsign(x) . (7)

The mapping π2 : TN
+ → 2A

∗
is an ω-product on T. One can easily see that sign(x) = wsign(x)/≡ , so

wsign(x) = wsign(y) ⇔ sign(x) = sign(y). From this follows x ∼ y ⇔ π2(x) = π2(y). As wsign(x) is an
infinite set of words, we have π2(x) /∈ T+, and π2 is associative.

5

We can now define infinite traces to be the values of π2. Unfortunately, they do not seem to have a
nice characterization such as stated by Proposition 3 for values of π1. In particular, they are, as a rule,
not directed sets. For further use, we note the following property:

Proposition 4. For each x ∈ TN
+, wsign(x) is a lower set without maximal elements.

Proof. Consider any x = [x1], [x2], [x3], . . . ∈ TN
+.

Take any x ∈ wsign(x). By (6), [x] belongs to sign(x). Consider any y ∈ A∗ such that y ≤ x. This
implies [y] ≤ [x]. According to Proposition 3, sign(x) is a lower set, so [y] ≤ [x] implies [y] ∈ sign(x).
By (6), we have y ∈ wsign(x), showing that wsign(x) is a lower set.
According to (4), [x] ∈ sign(x) means [x] ≤ [x1 . . . xi] ≤ [x1 . . . xixi+1] for some i ≥ 1. From [x] ≤
[x1 . . . xixi+1] follows x ≤ z for some z ∈ [x1 . . . xixi+1]. As [x] ≤ [x1 . . . xi] and xi+1 ̸= ε, z is longer
than, and thus different from, x. Clearly, [x1 . . . xixi+1] ∈ sign(x), so z ∈ wsign(x) by (6). Hence, x is a
prefix of another word in wsign(x) and thus not maximal.

5.3 Version 3: set of infinite words as value

A set of finite words with properties stated by Proposition 4 can be uniquely represented by the set of
its least upper bounds. Following this idea we define, for x ∈ TN

+:

π3(x) = {u ∈ Aω | ↓u ⊆ wsign(x)} . (8)

The mapping π3 : TN
+ → 2A

ω

is an ω-product on T. We check that π3(x) indeed uniquely identifies
wsign(x):

Proposition 5. For any x ∈ TN
+, ↓(π3(x)) = wsign(x).

Proof. Consider any x = [x1], [x2], [x3], . . . ∈ TN
+.

Take any x ∈↓(π3(x)), that is, x ∈↓u for some u ∈ π3(x). According to (8), x ∈ wsign(x).
Take now any x ∈ wsign(x). According to Proposition 4, wsign(x) does not have maximal elements.
That means, wsign(x) contains an infinite ascending chain x ≤ z1 ≤ z2 ≤ z3 ≤ There exists unique
infinite word u having all these words as prefixes. According to Proposition 4, wsign(x) is a lower set.
That means it contains all prefixes of all zi for i ≥ 1, and thus all prefixes of u. According to (8),
u ∈ π3(x). As x ≤ u, we have x ∈↓(π3(x)).

It follows that π3(x) = π3(y) ⇔ wsign(x) = wsign(y) ⇔ x ∼ y. As π3(x) consists of infinite words,
we have π3(x) /∈ T+, and π3 is associative.

We could regard the values of π3 as infinite traces. Because π3(x) identifies the sequence x up to
similarity, it uniquely identifies the behavior represented by π1(x) and π2(x). But, one cannot interpret
the infinite words in π3(x) as possible sequences of events belonging to that behavior. As an example,
suppose A = {a, b, c} with (a, b) ∈ I. Consider the sequence x = [ab], [ab], [ab], Each partial product
[ab] · . . . · [ab] consists of all permutations of an equal number of a’s and b’s. But, wsign(x) contains words
an for any n ≥ 1. These are all prefixes of aω, so aω ∈ π3(x). This does not agree well with the intuition
of [ab] · [ab] · [ab] · . . . describing infinite behavior represented by x; we would expect it to contain only
words with infinitely many a’s and b’s.
One can obtain a better representation by choosing a different set of infinite words. The point is that

different subsets of Aω may define the same set wsign(x).

5.4 Version 4: another set of infinite words as value

Let us define the signature of an infinite word u ∈ Aω as:

sign(u) =
∪
x≤u

↓ [x] . (9)

The signatures of words and sequences are closely related:

Proposition 6. sign([x1], [x2], [x3], . . .) = sign(x1x2x3 . . .) for any [x1], [x2], [x3], . . . ∈ TN
+.

6

Proof. The infinite word x1x2x3 . . . is a string of letters, that is, x1x2x3 . . . = a1a2a3 . . . where ai ∈ A
for i ≥ 1. According to in (9), sign(x1x2x3 . . .) is the union of ↓ [a1 . . . an] for n ≥ 0. This is identical to
sign([a1], [a2], [a3], . . .). By Proposition 2, [x1], [x2], [x3], . . . ∼ [a1], [a2], [a3], The stated result follows
from Proposition 1.

We recall that each similarity class of T consists of sequences having the same signature. According to
Proposition 6, the set of words having exactly that signature is nonempty for each similarity class. We
can use this set as value of an ω-product. Following this idea we define, for x ∈ TN

+:

π4(x) = {u ∈ Aω | sign(u) = sign(x)} . (10)

The mapping π4 : TN
+ → 2A

ω

is an ω-product on T. Different signatures define different sets of words, so
π4(x) = π4(y) ⇔ x ∼ y. As π4(x) consists of infinite words, we have π4(x) /∈ T+, and π4 is associative.
Let ∼= be the equivalence relation on Aω defined by u ∼= v ⇔ sign(u) = sign(v) for u, v ∈ Aω. Each

value of π4 is an equivalence class of ∼=. From Proposition 6 follows that, conversely, each equivalence
class of ∼= is the value of π4(x) for some x ∈ TN

+.
By Proposition 6, the ω-product [x1x2x3 . . .] is now an equivalence class of ∼= containing

x1x2x3 . . . , which is analogous to [x] denoting the equivalence class of ≡ containing x. This is even
more than analogy: the extension of ∼= to finite words obtained by allowing u ∈ A∞ in (9) is identical
to ≡ . The value of π4 extends thus in a natural way the notion of finite trace, and is a good candidate for
an infinite trace. It is, in fact, exactly the infinite trace introduced by Kwiatkowska [5,6] and Gastin [2,3].
According to these authors, infinite trace is an equivalence class of relation ≈ on Aω defined by

u ≈ v ⇔ (v ≪ u and u ≪ v), (11)

where v ≪ u ⇔ (for every y ≤ v exists x ≤ u such that [y] ≤ [x]) . (12)

Proposition 7. The values of π4(x) for x ∈ TN
+ are exactly the infinite traces defined by (11)–(12).

Proof. It is enough to show that v ≪ u ⇔ sign(v) ⊆ sign(u) for u, v ∈ Aω.

Suppose v ≪ u and consider any [z] ∈ sign(v). By (9), we have [z] ≤ [y] for some y ≤ v. By (12), exists
x ≤ u such that [y] ≤ [x]. We have [z] ≤ [y] ≤ [x]; from (9) follows [z] ∈ sign(u) .

Suppose now sign(v) ⊆ sign(u) and take any y ≤ v. We have [y] ∈ sign(v) ⊆ sign(u), which means
[y] ≤ [x] for some x ≤ u; from (12) follows v ≪ u.

Let us return now to the sequence x = [ab], [ab], [ab], . . . where (a, b) ∈ I. One can easily see that
sign(x) is the set of all traces [ambn] with arbitrarily large m ≥ 0 and n ≥ 0. It is the same as signature
of any word consisting of infinitely many a’s and b’s. The signatures of words with only finitely many a’s
are different: they do not contain [ambn] with m above certain value. The same holds symmetrically for
words with only finitely many b’s. It follows that π4(x) is exactly the set of words with infinitely many
a’s and b’s.

We wrap up by checking that π4(x) still induces wsign(x) as the set of its prefixes:

Proposition 8. For any x ∈ TN
+, ↓(π4(x)) = wsign(x).

Proof. Let x = [x1], [x2], [x3], . . . ∈ TN
+. Take any x ∈↓ (π4(x)), that is, x ≤ u for some u ∈ π4(x). By

(9), [x] ∈ sign(u), and by (10), [x] ∈ sign(x); by (6), x ∈ wsign(x).
Take now any x ∈ wsign(x). By (6), [x] ∈ sign(x), that is, [x] ≤ [x1 . . . xi] for some i ≥ 1.
This implies x ≤ z for some z ∈ [x1 . . . xi]. Denote v = zxi+1xi+2xi+3 By Proposition 6,
sign(v) = sign([z], [xi+1], [xi+2], [xi+3], . . .). But [z] = [x1 . . . xi]; by Propositions 2 and 1 we have
sign(v) = sign(x), so v ∈ π4(x). By construction of v, we have x ≤ v, so x ∈↓(π4(x)).

7

6 Including null trace

Results from the preceding section do not extend smoothly to sequences including [ε]. The sequences

ending with [ε]
N
= [ε], [ε], [ε], . . . deviate from the patterns established in Section 5. In addition, their

products do not quite correspond to the notion of infinite trace. For the sake of completeness, we outline
the consequences of allowing null trace.
Proposition 1 that was the foundation of our constructions for T remains valid for the semigroup (T, ·)

of all traces. The Lemmas that were used to prove it are valid for (T, ·), with the only modification that
we have to allow [zi] = [ε] in Lemma 3.
Definitions of π1 and π2 are applicable to all sequences in TN and the resulting products satisfy

(A1)–(A2). The result of π1([x1], . . . , [xn], [ε]
N
) is a finite set ↓ [x1 . . . xn] of traces, and the result of

π2([x1], . . . , [xn], [ε]
N
) is the corresponding finite set of words. In particular, we have π1([ε]

N
) = {[ε]} and

π2([ε]
N
) = {ε}. These results are not in T only if we keep a strict distinction between {[ε]}, {ε}, and [ε].

If we do not (which is quite common), they are in T , and do not satisfy (A3).

Definition (8) does not apply in a meaningful way to sequences ending with [ε]
N
. We may modify it

to correctly specify the set of least upper bounds also for finite wsgn(x). Or, what is equivalent, define

π3([x1], . . . , [xn], [ε]
N
) = [x1 . . . xn] as a special case. This extension satisfies

π3(x) = π3(y) ⇔ x ∼ y, but the result [x1 . . . xn] is in T . However, we have

π3([x], [x1], . . . , [xn], [ε]
N
) = [x] · [x1 . . . xn] ,

so this result satisfies (A3) and the extended π3 is associative.
Definitions (9) and (10) are perfectly applicable to any u ∈ A∞. Proposition 6 must be adjusted

by assuming a convention that xεεε . . . = x. We again have a finite trace [x1 . . . xn] as the result of

π4([x1], . . . , [xn], [ε]
N
). As before, it satisfies (A3) and the extended π4 is associative.

7 Conclusions

The fact that two known definitions of infinite trace coincide with associative ω-products indicates a
strong relationship between these ideas.
We note that all four ω-products discussed in Section 5 are ”free” in the sense defined in [13], and thus

isomorphic. There is a one-to-one mapping between each pair that preserves the infinite product and the
mixed product. In other words, all four are ”the same” and differ only by the choice of values. Indeed,
the values we chose for π1–π4 can be uniquely converted into each other: each of them uniquely defines
sign(x), from which one can reconstruct the sequence x – up to similarity – as shown in the proof of
Proposition 3, part (2).
Our four ω-products may be regarded as different representations of the same abstract object. One is

tempted to define infinite trace to be just a free associative ω-product of finite non-null traces, without
bothering how it is represented. But, the choice of representation is significant when it comes to properties
other than associativity. As we have seen, π4 can be viewed as a nice extension of finite traces while π3

has a disturbing counter-intuitive property.
According to common sense, infinite behavior involving fairness constraints (such as b having to occur

infinitely often) cannot be adequately defined by means of finite initial sequences. It appears thus as a
kind of paradox that correct infinite behavior, such as represented by values of π4, is fully defined by a set
of finite prefixes that is the value of π2. It looks like the initial behavior together with the independence
relation I is sufficient to represent fair behavior.

Acknowledgements

The subject of this paper was suggested by an anonymous referee of [13]. Lemma 1 was inspired by a
comment from Antoni Mazurkiewicz. The author thanks Ludwik Czaja and an anonymous referee for a
number of useful suggestions.

8

References

[1] Abramsky, S., and Jung, A. Domain theory. In Handbook of Logic in Computer Science,
S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, Eds., vol. 3. Oxford University Press, 1994,
pp. 1–168.

[2] Gastin, P. Un modèle asynchrone pour les systèmes distribués. Tech. Rep. 88-59, LITP, Université
Paris 6, 1988.

[3] Gastin, P. Infinite traces. In Semantics of Systems of Concurrent Processes, I. Guessarian, Ed.,
no. 469 in Lecture Notes in Comp. Sci. Springer-Verlag, 1990, pp. 277–308.

[4] Gastin, P., and Petit, A. Infinite traces. In The Book of Traces, V. Diekert and G. Rozenberg,
Eds. World Scientific, 1995, pp. 393–486.

[5] Kwiatkowska, M. Z. Fairness for non-interleaving concurrency (phd thesis). Tech. Rep. 22,
University of Leicester, Department of Computing Studies, 1989.

[6] Kwiatkowska, M. Z. On the domain of traces and sequential composition. In TAPSOFT’91,
S. Abramsky and T. S. E. Maibaum, Eds., no. 493 in Lecture Notes in Comp. Sci. Springer-Verlag,
1991, pp. 42–56.

[7] Mazurkiewicz, A. Concurrent program schemes and their interpretations. Tech. Rep. DAIMI
PB-78, Comp. Sci. Dep., Århus Universitet, 1977.

[8] Mazurkiewicz, A. Trace theory. In Petri Nets: Applications and Relationships to Other Models
of Concurrency, W. Brauer, W. Reisig, and G. Rozenberg, Eds., no. 255 in Lecture Notes in Comp.
Sci. Springer-Verlag, 1987, pp. 371–388.

[9] Mazurkiewicz, A. Introduction to trace theory. In The Book of Traces, V. Diekert and G. Rozen-
berg, Eds. World Scientific, 1995, pp. 3–41.

[10] Perrin, D., and Pin, J.-E. Mots infinis. Tech. Rep. LITP Report 93.40, Institut Blaise Pascal,
Université Paris VII, 1993.

[11] Perrin, D., and Pin, J.-E. Infinite Words. Automata, Semigroups, Logic and Games. No. 141 in
Pure and Applied Mathematics. Elsevier, 2004.

[12] Redziejowski, R. R. Adding an infinite product to a semigroup. In Automata Theory: Infinite
Computations, K. Compton, J.-E. Pin, and W. Thomas, Eds., no. 28 in Dagstuhl Seminar Report.
Internationales Begegungs- und Forschungszentrum für Informatik Schloss Dagstuhl, 1992, p. 9.

[13] Redziejowski, R. R. On associative omega-products. Fundamenta Informaticae 60, 1-4 (2004),
333–350.

9

