
Associative Omega-product of Processes∗

Roman R. Redziejowski

Abstract

The notion of an associative omega-product is applied to processes. Processes are one of the ways
to represent behavior of Petri nets. They have been studied for some years as an alternative to
traces and dependence graphs. One advantage of processes, as compared to traces, is a very simple
way to define infinite concatenation. We take a closer look at this operation, and show that it is a
free associative omega-product of finite processes. Its associativity simplifies some arguments about
infinite concatenation, as illustrated by the proof of interleaving theorem.

1 Introduction

The analysis of systems that do not stop is naturally reduced to considering their infinite behavior.
A common approach is to consider infinite composition of steps that make that behavior. One arrives
thus at infinite composition of words, traces, processes, state transformations, or other objects. This
infinite composition is not an infinite repetition of a finite operation, but a new operation on an infinite
sequence of operands. In the following, such operation is referred to as an ω-product, and its operands as
factors.
Some ω-products are associative, that is, their result does not change if neighboring factors are combined

before applying the infinite operation; some are not. For a long time, infinite composition and its
associativity have been exploited in a rather informal way. Apparently, the first formal definition of an
associative ω-product was published in [13]. Slightly before, the present author proposed a set of axioms
for an associative ω-product in a Dagstuhl Seminar lecture, of which only an abstract [15] was published.
Being applied to finite automata, the infinite product was mainly studied for finite semigroups. An
extensive review can be found in [14]. A recent paper [16] by the present author is a general study of
associative ω-products for arbitrary semigroups.
In this paper, we apply some results from [16] to ”processes” introduced in [1–5]. These processes are

slightly different from those in earlier publications, such as [6, 7]. The main idea is to describe evolution
of a Petri net by a composition of certain ”atomic processes”. This is analogous to the way sequential
systems are described by words composed of letters. As expressed in [2], processes are ”non-linear words”.
These ”words” can be concatenated in various ways to define ”languages” of processes.

We begin, in Section 2, by recalling the necessary definitions and results from [16]. Section 3 is an
informal introduction to processes and their concatenation. Processes are sets of certain ”events” that
represent firings of transitions, but not every set of such events is a process. In Section 4, we define
concatenation for arbitrary sets of events. We use it in Section 5 to define finite processes. In Section 6,
we define the ω-product of finite processes and use it to define infinite processes. We show that this
ω-product is associative and free. In Section 7, we look at concatenation of infinite processes. Section 8
indicates modifications needed to handle nets with limited capacity of places, and Section 9 relates
processes to traces.

∗Appeared in Fundamenta Informaticae 72 (2006) 333-345.

1

2 Associative ω-products

The set of all natural numbers (positive integers) is in the following denoted by N. A sequence of elements
of set S is a mapping x : N → S. It is visualized as a linear arrangement of elements x(1),x(2),x(3),
The set of all sequences of elements of S is denoted by SN. The sequence s,x(1),x(2),x(3), . . . obtained
by adding s ∈ S in front of sequence x ∈ SN is denoted by s,x.
A semigroup is a pair (S, ·) where S is a set, and · is an associative operation on S, referred to as the

semigroup product. The product is left-cancellative if x · y = x · z implies y = z for all x, y, z ∈ S.
An ω-product on (S, ·) is a surjective mapping π from SN to some set V of values. These values may

belong to S or be outside S.
Given a sequence s1, s2, s3, . . . ∈ SN, it is convenient to write π(s1, s2, s3, . . .) informally as

s1 · s2 · s3 · In this form, symbol · denotes the ω-product, not an operation on two neighboring
factors. Informally speaking, we say that π is ”associative” if it satisfies identities of this kind:

s1 · s2 · s3 · s4 · s5 · s6 . . . = (s1 · s2 · s3) · (s4 · s5 · s6) · . . . , (1)

s1 · s2 · s3 · . . . = (s1 · . . . · sn) · (sn+1 · sn+2 · sn+3 · . . .) . (2)

In (1), we understand the dot within parentheses to mean the semigroup product, and outside parentheses
to mean the ω-product. In (2), the dot within the first pair of parentheses denotes the semigroup
product; within the second pair, it denotes the ω-product. The dot in the middle stands for an operation
◦ : S × V → V defined by s ◦ π(x) = π(s,x) and called the mixed product.
In order to express (1) more precisely, we need the following definition. We say that sequence y =

y1, y2, y3, . . . ∈ SN is a contraction of sequence x = x1, x2, x3, . . . ∈ SN, denoted x ◃ y, if there exists an
ascending sequence of natural numbers n1, n2, n3, . . . such that

yi =

{
x1 · . . . · xn1 for i = 1 ,

xni−1+1 · . . . · xni for i > 1 .
(3)

For example, the sequence s1, (s2· s3), s4, (s5· s6), . . . is a contraction of s1, s2, s3, If the semigroup
product is left-cancellative, (3) is equivalent to

y1 · . . . · yi = x1 · . . . · xni for i ≥ 1 . (4)

Formally, we say that ω-product π : SN → V is associative if it has these three properties:

x ◃ y ⇒ π(x) = π(y) for all x,y ∈ SN ; (5)

π(x) = π(y) ⇒ π(s,x) = π(s,y) for all x,y ∈ SN and s ∈ S ; (6)

π(s,x) = s · π(x) for all s ∈ S and x ∈ SN such that π(x) ∈ S . (7)

Property (5) states validity of all equations of the form (1); property (6) ensures that mixed product is
uniquely defined, and (7) ensures that (2) is not ambiguous.
According to (5), we must have π(x) = π(y) whenever x and y can be transformed into each other in

a finite number of steps using contraction. Such sequences x,y are here called similar, written x ∼ y.
More precisely, x ∼ y means that there exist sequences z1, z2, . . . , zk such that x = z1, y = zk, and
either zi ◃ zi+1 or zi+1 ◃ zi for 1 ≤ i < k. In other words, ∼ is the reflexive, symmetric, and transitive
closure of ◃; it is an equivalence relation on SN.
Property (5) is identical to x ∼ y ⇒ π(x) = π(y) for all x,y ∈ SN. An ω-product π such that

x ∼ y ⇔ π(x) = π(y) and π(x) /∈ S for all x,y ∈ SN satisfies all of (5)–(7) and is called a free associative
ω-product on (S, ·). All free associative ω-products on a given semigroup are identical up to the choice
of values, in the sense that for any two such products, π and π′, there exists a bijection φ between their
sets of values satisfying π′(x) = φ(π(x) for all x ∈ SN.

2

3 Introduction to processes

A ”process” defined in [1–5] is best visualized as a graph like this:

a, 0 b, 1
d, 1

c, 1 a, 1

b, 2

Fig. 1.

Its vertices are ”occurrences” and ”events”. The occurrences are pairs of the form <x, n>. The events
are shown as boxes. The graph describes some activity in a Petri net with unlimited place capacity and
unlimited initial marking. An occurrence <x, n> represents place x in the net after it received a token
n times since the start of the activity. An event represents a transition that removes tokens from places
identified by incoming arrows and adds tokens to places identified by outgoing arrows. The order of
events obtaining tokens from the same occurrence is undefined.
An alternative way to represent the same process is to enumerate its events. An event is identified only

by the set of its ”inputs” and ”outputs”. For example, the leftmost event in Figure 1 is only identified
as ”the event having <a, 0> as input and <b, 1> as output”. Figure 2 shows all events from Figure 1
identified in this way.

a, 0

b, 1

b, 1

c, 1

b, 1

d, 1

c, 1 d, 1

a, 1 b, 2

Fig. 2.

As one can easily see, the set of events in Figure 2 contains complete information about the graph of
Figure 1: all events, arrows, and occurrences are there. A specific occurrence, such as < b, 1 >, may
appear several times, but it is still one occurrence. This method of representing a process is much less
intuitive than the graph of Figure 1, but gives a very simple way to express concatenation of processes.
The concatenation α · β of processes α and β represents, as usual, ”α followed by β”. With processes

seen as unordered sets of events (such as in Figure 2), this ”followed by” is represented by incrementing
numbers in the occurrences belonging to β. Indeed, if x received a token n times in α, and β follows α,
an occurrence <x,m> from β represents now x that received a token m + n times. This operation of
counting up the occurrence numbers in β by the highest occurrence number in α is called the ”α-shift
of β” and is denoted by βα. The concatenation α · β is just the union of α and βα, as illustrated in
Figure 3.

a, 0

b, 1

b, 1

c, 1

α

followed by

b, 0

d, 1

c, 0 d, 1

a, 1 b, 1

β

is defined as α ∪ βα :

a, 0

b, 1

b, 1

c, 1

α

b, 1

d, 1

c, 1 d, 1

a, 1 b, 2

βα

Fig. 3.

3

(Notice that the highest occurence numbers of a, b, and c in α are, respectively, 0, 1, and 1. As d does not
appear in α, its occurrence in β need not be adjusted.) Figure 4 shows the same operation with processes
represented as graphs. One can see that the two processes have been joined at the places indicated by
solid lines.

α = a, 0 b, 1 c, 1

β =
b, 0 d, 1

c, 0 a, 1

b, 1

a, 0 b, 1
d, 1

c, 1 a, 1

b, 2
α · β =

Fig. 4.

The main idea in [1–5] is that processes are constructed by concatenation of ”atomic processes”. Each
atomic process consists of a single event. Its input occurrences are numbered 0 and output occurrences
are numbered 1: the input places did not receive a token yet, and each output place received a token
once. As an example, the process of Figure 1 is obtained from the four atomic processes in Figure 5,
concatenated in the order shown.

a, 0

b, 1

b, 0

c, 1

b, 0

d, 1

c, 0 d, 0

a, 1 b, 1

Fig. 5.

4 Occurrences, events, concatenation

We proceed now to formal definitions. Let X be a given nonempty set of places that will remain fixed
for the rest of the discussion. An occurrence of x ∈ X is a pair <x, n> where n is a non-negative integer
called the occurrence number. An occurrence <x, n> with n = 0 is called a zero-occurrence; otherwise
it is a non-zero occurrence.

An event u is an ordered pair < •u, u•> where •u ⊆ X× (N∪{0}) and u• ⊆ X×N are finite nonempty
sets. These sets are, respectively, the inputs and outputs of u. The set of all events is denoted by E. Its
subsets are in the following denoted by small Greek letters.

Let α ⊂ E be any set of events. The set of all occurrences appearing in α is called the carrier of α and
is denoted by car(α):

car(α) =
∪
u∈α

(•u ∪ u•) . (8)

It is the set of all occurrence vertices of the graph such as in Figure 1. We say that <x, n> belongs to α,
or that α contains <x, n >, to mean that <x, n >∈ car(α). We say that place x occurs in α to mean
that car(α) contains an occurrence of x. The set of all places occurring in α is denoted by pl(α):

pl(α) = {x ∈ X | <x, n>∈ car(α) for some n} . (9)

For a finite α ⊂ E and place x ∈ X, we define Ψ(α, x) to be the highest number in the set
{n |<x, n>∈ car(α)} ∪ {0}. We define the α-shift of an event u ∈ E to be the event uα such that

•(uα) = {<x, n+Ψ(α, x)> | <x, n>∈ •u} , (10)

(uα)• = {<x, n+Ψ(α, x)> | <x, n>∈ u•} .

4

We extend this to a set β ⊂ E by defining

βα = {uα |u ∈ β} . (11)

Finally, we define the concatenation of finite α ⊂ E and any β ⊂ E as

α · β = α ∪ βα . (12)

The processes described in Section 3 are subsets of E, but not every such subset is a process. For
example, the set of events obtained from that in Figure 2 by changing <b, 2> to <b, 3> is not a process.
However, the concatenation just defined applies generally to all sets of events, with the only restriction
that α be finite. We shall need a number of facts about this operation.
From (11) follows immediately that α-shift distributes over unions, that is, for any finite α ⊂ E and any
family {βi ⊂ E | i ∈ I} holds(∪

i∈I

βi

)α
=

∪
i∈I

βα
i . (13)

Proposition 1. Concatenation is associative, that is, α · (β ·γ) = (α ·β) ·γ holds for any finite α, β ⊂ E
and any γ ⊂ E.

Proof. Let α, β and γ be as stated. From (12) and (13) follows:

α · (β · γ) = α ∪ (β ∪ γβ)α = α ∪ βα ∪ (γβ)α ,

(α · β) · γ = (α · β) ∪ γα·β = α ∪ βα ∪ γα·β .

It remains to verify that (γβ)α = γα·β . One can easily see that Ψ(α · β, x) = Ψ(α, x) + Ψ(β, x) for any
x ∈ X. Using this, one can verify that each of the two operations on γ replaces each occurrence <x, n>
in γ by <x, n+Ψ(α, x) + Ψ(β, x)>.

Proposition 2. The sets α and βα are disjoint, for any finite α ⊂ E and any β ⊂ E.

Proof. Suppose an event u belongs to both α and βα. According to (11), if u ∈ βα, β must contain an
event v such that u = vα. Take any <x, n>∈ v•. By definition of event, we have n > 0. By u = vα,
u• contains the occurrence < x, n + Ψ(α, x)>. But u is also in α, so < x, n + Ψ(α, x)>∈ car(α); by
definition of Ψ(α, x) we have Ψ(α, x) ≥ n+Ψ(α, x), which contradicts n > 0.

Proposition 3. Concatenation is left-cancellative, that is, α · β = α · γ ⇒ β = γ for any finite α ⊂ E
and any β, γ ⊂ E.

Proof. Consider any α, β, γ such that α · β = α · γ. According to (12), that means α ∪ βα = α ∪ γα. By
Proposition 2, α∩βα = α∩ γα = ∅, so βα = γα. One can easily see that α-shift is reversible, that is, for
given α, the set β is uniquely defined by βα; thus βα = γα implies β = γ.

5 Finite processes

An atomic process is a singleton set {u} ⊂ E where u is an event such that:

(1) n = 0 for each <x, n>∈ •u.
(2) n = 1 for each <x, n>∈ u•.
(3) All places occurring in •u and u• are distinct.

A process is any concatenation of n ≥ 1 atomic processes. (By convention, n = 1 means a single atomic
process.) Because of associativity, the concatenation of atomic processes σ1, σ2, . . . , σn can be written
unambiguosly as σ1 · σ2 · . . . · σn.
The processes just defined are finite sets of events, and we refer to them as finite processes. The set of

all finite processes is in the following denoted by Pf . Because of associativity, the concatenation of finite
processes always results in a finite process, so · is an operation in Pf and (Pf , ·) is a semigroup.

5

6 Infinite processes

In [1, 2, 4, 5], concatenation is extended to infinite sequences of processes. Let a = α1, α2, α3, . . . be a
sequence of finite processes. The concatenation of a is defined as:

π(a) =
∪
i≥1

α1 · . . . · αi . (14)

The result is an infinite set of events and is called an infinite process. The set of all infinite processes is
in the following denoted by Pω:

Pω = {π(a) |a ∈ PN
f } .

The mapping π : PN
f → Pω is, by our definition from Section 2, an ω-product on the semigroup (Pf , ·).

Using (12), one can easily verify that

π(a) = α1 ∪
∪
i>1

α
α1·...·αi−1

i . (15)

Proposition 4. The ω-product π satisfies (5).

Proof. Consider any a = α1, α2, α3, . . . ∈ PN
f and b = β1, β2, β3, . . . ∈ PN

f , such that a ◃ b. We recall that
concatenation is left-cancellative (Proposition 3). According to (4), there exists an ascending sequence
of integers n1, n2, n3, . . . such that β1 · . . . · βi = α1 · . . . · αni for all i ≥ 1. From (12) follows that
α1 · . . . · αi ⊆ α1 · . . . · αj whenever i < j, so the union in (14) will not change if we remove from it all
terms α1 · . . . · αj where j does not appear among n1, n2, n3, This gives:

π(a) =
∪
i≥1

α1 · . . . · αi =
∪
i≥1

α1 · . . . · αni =
∪
i≥1

β1 · . . . · βi = π(b) .

Proposition 5. The mixed product induced by π is identical to the concatenation defined by (12).

Proof. As stated in Section 2, mixed product is an operation ◦ : Pf × Pω → Pω defined by β ◦ π(a) =
π(β,a) for a = α1, α2, α3, . . . ∈ PN

f and β ∈ Pf . Consider any such a and β. Applying (13), we obtain:

β ◦ π(a) = π(β,a) =
∪
i≥1

(β · α1 · . . . · αi) =
∪
i≥1

(β ∪ (α1 · . . . · αi)
β)

= β ∪
∪
i≥1

(α1 · . . . · αi)
β = β ∪

(∪
i≥1

α1 · . . . · αi

)β
= β · π(a) .

Proposition 6. π is an associative ω-product on (Pf , ·).

Proof. We recall from Section 2 that π is called associative if it has all of the properties (5)–(7). Property
(5) is stated by Proposition 4, and (6) follows immediately from Proposition 5. Property (7) follows from
Pf ∩Pω = ∅.

Because of (5), each infinite process can be represented as infinite concatenation of atomic processes.
Each finite process αi in a = α1, α2, α3, . . . is a concatenation of some atomic processes. Let b be the
sequence obtained from a by replacing each αi by sequence of these atomic processes. Obviously, a is a
contraction of b, so π(a) = π(b). The sequence b is in the following called a generating sequence of π(a).
The process π(a) can, in general, have many generating sequences. It turns out that these sequences are
all similar, in the sense defined in Section 2. To demonstrate this, we need a couple of auxiliary results.

We shall say that processes α ∈ Pf and β ∈ Pf are independent if either pl(α) ∩ pl(β) = ∅, or all
occurrences in α and β of places occurring in both are zero-occurrences. Thus, if α and β are independent,
we have Ψ(α, x) = 0 for each x ∈ pl(β) and Ψ(β, x) = 0 for each x ∈ pl(α), from which follows αβ = α,
βα = β and α · β = α ∪ β = β · α.

6

Lemma 1. Let s = σ1, σ2, σ3, . . . and t = τ1, τ2, τ3, . . . be two sequences of atomic processes such that
π(s) = π(t) . There exists i ≥ 1 such that τi = σ1 and τ1 · . . . · τi = τi · τ1 · . . . · τi−1.

Proof. The Lemma is trivially true if σ1 = τ1. Assume σ1 ̸= τ1. According to (15), π(s) contains unshifted
event u from σ1. But π(s) = π(t), so u appears also in π(t). We have thus u ∈ ταi for some i > 1, where
α = τ1 · . . . · τi−1. As u is an unshifted event from an atomic process, we must have Ψ(α, x) = 0 for each
x ∈ pl(τi). That means, either x does not occur in α or all occurrences of x in α are zero-occurrences.
If none of x ∈ pl(τi) occurs in α, α and τi are independent, and α · τi = τi · α.
Suppose some x ∈ pl(τi) occurs in α. As found above, that occurrence of x must be a zero-occurrence.
Let v be the event containing that occurrence. Because π(s) = π(t), v belongs also to π(s). That means
v is the event from σj for some j ≥ 1, shifted by β = σ1 · . . . · σj−1. But the occurrence < x, 0 > in
v can only be the result of shift by 0, meaning Ψ(β, x) = 0. Hence, any occurrence of x in β must be
a zero-occurrence. This applies, in particular, to the occurrence of x in σ1 = τi. It follows that any
occurrence of x in both α and τi is a zero-occurrence. Thus, α and τi are independent, and α · τi = τi ·α.
As α = τ1 · . . . · τi−1, we have in each case τ1 · . . . · τi = τi · τ1 · . . . · τi−1.

Lemma 2. Let s = σ1, σ2, σ3, . . . and t = τ1, τ2, τ3, . . . be two sequences of atomic processes such that
π(s) = π(t) . For each n ≥ 1 there exist m > n and γ ∈ Pf such that σ1 · . . . · σn · γ = τ1 · . . . · τm.

Proof. Take any n ≥ 1. By a repeated application of Lemma 1, we arrive at a permutation τ ′1 · . . . · τ ′m of
τ1 · . . . · τm such that τ ′1 · . . . · τ ′m = τ1 · . . . · τm and τ ′i = σi for 1 ≥ i ≥ n. We can always take m > n, so
we have σ1 · . . . · σn · τ ′n+1 · . . . · τ ′m = τ1 · . . . · τm. This is the stated result with γ = τ ′n+1 · . . . · τ ′m.

Proposition 7. For any sequences s, t of atomic processes, π(s) = π(t) implies s ∼ t.

Proof. Let s = σ1, σ2, σ3, . . . and t = τ1, τ2, τ3, . . . where σi and τi are atomic for i ≥ 1. Take any n1 ≥ 1.
According to Lemma 2, there exist:

– m1 > n1 and γ1 such that σ1 · . . . · σn1 · γ1 = τ1 · . . . · τm1 ,
– n2 > m1 and δ1 such that τ1 · . . . · τm1

· δ1 = σ1 · . . . · σn2
,

– m2 > n2 and γ2 such that σ1 · . . . · σn2 · γ2 = τ1 · . . . · τm2 ,

and so on. This gives two ascending sequences, n1, n2, n3, . . . and m1,m2,m3, . . . , of natural numbers
and two sequences, γ1, γ2, γ3, . . . and δ1, δ2, δ3, . . . , of finite processes, such that

σ1 · . . . · σni · γi = τ1 · . . . · τmi ,

τ1 · . . . · τmi · δi = σ1 · . . . · σni+1 ,

for i ≥ 1. Denoting δ = σ1 · . . . · σn1 we obtain, by induction:

σ1 · . . . · σni = δ · γ1 · δ1 · . . . · γi−1 · δi−1 ,

τ1 · . . . · τmi = δ · γ1 · δ1 · γ2 · . . . · δi−1 · γi ,

for i ≥ 1. This can be illustrated as follows:

σ1 · . . . · σn1 · σn1+1 · · σn2+1 · · σn3+1

τ1 · · τm1+1 · · τm2+1

· σn2 · σn3

· τm1 · τm2

.

.

. . .

. . .

. . .

δ γ1 δ1 γ2 δ2

Fig. 6.

Define:

z = δ, γ1, δ1, γ2, δ2, . . . ,

p = δ, (γ1 · δ1), (γ2, δ2), . . . ,
q = (δ · γ1), (δ1 · γ2), (δ2 · δ3),

One can easily see that z ◃ p and z ◃ q. Recalling that concatenation is left-cancellative and using (4),
we obtain s ◃ p and t ◃ q. We have thus s ◃ p ▹ z ◃ q ▹ t and s ∼ t.

7

Proposition 8. π is a free associative ω-product on (Pf , ·).

Proof. We recall from Section 2 that π is free if a ∼ b ⇔ π(a) = π(b) and π(a) /∈ Pf for all a,b ∈ PN
f .

The first property follows from Propositions 4 and 7. The second follows from Pf ∩Pω = ∅.

7 Concatenation of infinite processes

In the concatenation α · β considered so far, α was always a finite process. Indeed, an infinite process
with something added behind would, in general, be a ”transfinite” process – a concept considered in [2]
to be of a ”lower intuitive appeal”. However, in some cases α · β with infinite α makes sense without
becoming transfinite, as in the following example:

α = a, 0
d, 1

b, 1 c, 1 b, 2 c, 2 · · ·

β = d, 0 e, 1 d, 1 e, 2 · · ·

α · β = a, 0
d, 1

b, 1 c, 1 b, 2 c, 2 · · ·

e, 1 d, 2 e, 2 · · ·

Fig. 7.

The reason why this makes sense is that the two processes are largely independent. An interesting
result from [2] is that if two infinite processes are sufficiently independent, their concatenation is also a
process: an infinite concatenation of their generating sequences suitably interleaved. In the following, we
attempt to simplify the proof of that result by exploiting associativity.
We note first that if car(α) contains at most finitely many non-zero occurrences of a place x ∈ X, the

definition of Ψ(α, x) as the highest n in {n |<x, n>∈ car(α)} ∪ {0} makes perfect sense, even if α is
infinite. If this is true for all x ∈ pl(β), our definitions (10), (11) and (12) of βα and α · β are valid,
and we continue to apply them in such a case. They describe, in particular, the operation illustrated in
Figure 7.
If car(α) contains infinitely many non-zero occurrences of x, there is no such highest number. If this

is the case for any x ∈ pl(β), the definitions of βα and α · β are no longer valid. We indicate this by
writing α ·β = Ω where Ω is a new object meaning ”undefined”. In [1,2,4,5], one continues by extending
concatenation to a semigroup containing Ω, but this is not needed here.
The notion of independence extends unchanged to infinite processes, and we have α · β = β · α =

α ∪ β ̸= Ω for any independent α, β ∈ Pf ∪Pω.

Proposition 9. Let a = α1, α2, α3, . . . ∈ PN
f and b = β1, β2, β3, . . . ∈ PN

f be such that, for each i ≥ 1, βi

is independent of all αj with j > i. Then π(a) · π(b) = π(α1, β1, α2, β2, α3, β3, . . .) ̸= Ω.

Proof. Let a and b be as stated. Consider any n ≥ 1. One can easily see that β1 · . . . · βn and
π(αn+1, αn+2, . . .) are independent. That means Ψ(π(αn+1, αn+2, . . .), x) = 0 for each x ∈ pl(β1 · . . . · βn).
But π(a) = (α1 · . . . · αn) · π(αn+1, αn+2, . . .), so we have, for each x ∈ pl(β1 · . . . · βn):

Ψ(π(a), x) = Ψ(α1 · . . . · αn, x) + Ψ(π(αn+1, αn+2, . . .), x) = Ψ(α1 · . . . · αn, x) .

From this follows, in particular, that (β1 · . . . · βn)
π(a) = (β1 · . . . · βn)

α1·...·αn .
Clearly, each x ∈ pl(b) belongs to pl(β1 · . . . · βn) for some n ≥ 1; that means Ψ(π(a), x) is defined for
each such x, so π(a) · π(b) ̸= Ω. From independence of β1 · . . . · βn and π(αn+1, αn+2, . . .) follows:

π(a) · π(b) = (α1 · . . . · αn) · π(αn+1, αn+2, . . .) · (β1 · . . . · βn) · π(βn+1, βn+2, . . .)

= (α1 · . . . · αn) · (β1 · . . . · βn) · π(αn+1, αn+2, . . .) · π(βn+1, βn+2, . . .) ,

showing that (α1 · . . . · αn) · (β1 · . . . · βn) ⊆ π(a) · π(b) for all n ≥ 1. Take now any event u ∈ π(a) · π(b).
It either belongs to π(a) and thus to (α1 · . . . · αn) ⊆ (α1 · . . . · αn) · (β1 · . . . · βn) for some n ≥ 1; or it

8

belongs to π(b)π(a) and thus to (β1 · . . . · βn)
π(a) = (β1 · . . . · βn)

α1·...·αn ⊆ (α1 · . . . · αn) · (β1 · . . . · βn)
for some n ≥ 1. This proves π(a) · π(b) =

∪
n≥1(α1 · . . . · αn) · (β1 · . . . · βn). By assumption about

independence, (α1 · . . . · αn) · (β1 · . . . · βn) = α1 · β1 · . . . · αn · βn . We have thus

π(a) · π(b) =
∪
n≥1

(α1 · β1 · . . . · αn · βn) = π(α1 , β1 , α2 , β2 , α3 , β3 , . . .) .

Let us say that b = β1, β2, β3, . . . ∈ PN
f is almost independent of a = α1, α2, α3, . . . ∈ PN

f to mean that
each βi is independent of all but finitely many αj .

Proposition 10. If b is almost independent on a, there exists an ascending sequence of natural numbers
n1, n2, n3, . . . such that

π(a) · π(b) = π(α1, . . . , αn1 , β1, αn1+1, . . . , αn2 , β2, αn2+1, . . . , αn3 , β3, . . .) ̸= Ω .

Proof. If b is almost independent of a, there exists an ascending sequence of natural numbers n1, n2, n3, . . .
such that for each i ≥ 1, βi is independent of all αj with j > ni. Define c = γ1, γ2, γ3, . . . as the following
contraction of a:

γi =

{
α1 · . . . · αn1 for i = 1 ,

αni−1+1 · . . . · αni for i > 1 ;

Clearly, βi is independent of all γj with j > i.
From Proposition 9 follows π(c) · π(b) = π(γ1, β1, γ2, β2, γ3, β3, . . .) ̸= Ω. The stated result follows by
Proposition 4.

8 Processes in marked nets

As indicated in Section 3, the processes discussed so far represent behavior of Petri nets with unlimited
capacity of places and unlimited initial marking. They are referred to in [5] as ”processes in unmarked
nets”.
The limited capacity and initial marking can be handled in two different ways. In [1,2], concatenation is

restricted so that the result is ”undefined” if it does not correspond to a possible firing sequence. In [3–5],
one defines two functions, Iα(x) and Oα(x), that represent the number of tokens added to, respectively
removed from, place x by process α. These functions are used to formulate a condition that identifies
possible processes.
Each of these methods defines the subset Mf ⊆ Pf of finite processes that are possible in a specific

marked net. Denoting the impossible processes by Ω, one obtains a semigroup (Mf ∪ {Ω}, ◦), where ◦ is
an associative operation defined for α, β ∈ Mf as α ◦ β = α · β if α · β ∈ Mf , α ◦ β = Ω if α · β /∈ Mf ,
and α ◦ Ω = Ω ◦ α = Ω ◦ Ω = Ω.
An infinite process is possible if and only if all its initial portions are possible. This is reflected by

defining, for α1, α2, α3, . . . ∈ MN
f , π

′(α1, α2, α3, . . .) = π(α1, α2, α3, . . .) if α1 ◦ . . . ◦ αi ̸= Ω for all i ≥ 1,
and π′(α1, α2, α3, . . .) = Ω otherwise. The ω-product π′ on (Mf ∪ {Ω}, ◦) is associative, but not free.

9 Processes and traces

It is interesting to compare the above results with similar results for traces. Traces [9, 12] are another
way to describe concurrent systems. In [17], the present author considered four different versions of a
free associative ω-product of traces. Such ω-products are natural candidates for the definition of infinite
trace. In fact, two of them are identical to the notions of infinite trace suggested in [8, 10, 11]. All four
are complicated constructions based on prefixes.
As shown in [3], the semigroup of finite processes is isomorphic with the semigroup of finite traces.

The free associative ω-products on these semigroups are thus also isomorphic. In view of this fact, it
is surprising that infinite process can be defined in a very simple and intuitive manner: just an infinite
union of partial products – a natural limit of the sequence α1 ⊆ α1 · α2 ⊆ α1 · α2 · α3 ⊆

9

Acknowledgements

The author thanks Ludwik Czaja and two anonymous referees for a number of useful suggestions and
improvements.

References

[1] Czaja, L. Net-definability of process languages. Fundamenta Informaticae 37, 3 (1999), 213–223.

[2] Czaja, L. Process languages and nets. Theoret. Comp. Sci. 238, 1–2 (2000), 161–181.

[3] Czaja, L. Place/transition Petri net evolutions: recording ways, analysis and synthesis. Fundamenta
Informaticae 51, 1–2 (2002), 43–58.

[4] Czaja, L. On the analysis of Petri nets and their synthesis from process languages. Theoretical
Informatics and Applications 37, 1 (2003), 17–38.

[5] Czaja, L., and Kudlek, M. ω-process languages for place/transition nets. Fundamenta Infor-
maticae 47, 3–4 (2001), 217–229.

[6] Desel, J., and Reisig, W. Place/transition Petri nets. In Lectures on Petri Nets I: Basic Models,
W. Reisig and G. Rozenberg, Eds., Lecture Notes in Comp. Sci. Springer-Verlag, 1998, pp. 122–173.

[7] Engelfriet, J. Branching processes of Petri nets. Acta Inf. 28, 6 (1991), 575–591.

[8] Gastin, P. Infinite traces. In Semantics of Systems of Concurrent Processes, I. Guessarian, Ed.,
no. 469 in Lecture Notes in Comp. Sci. Springer-Verlag, 1990, pp. 277–308.

[9] Gastin, P., and Petit, A. Infinite traces. In The Book of Traces, V. Diekert and G. Rozenberg,
Eds. World Scientific, 1995, pp. 393–486.

[10] Kwiatkowska, M. Z. On the domain of traces and sequential composition. In TAPSOFT’91,
S. Abramsky and T. S. E. Maibaum, Eds., no. 493 in Lecture Notes in Comp. Sci. Springer-Verlag,
1991, pp. 42–56.

[11] Mazurkiewicz, A. Trace theory. In Petri Nets: Applications and Relationships to Other Models
of Concurrency, W. Brauer, W. Reisig, and G. Rozenberg, Eds., no. 255 in Lecture Notes in Comp.
Sci. Springer-Verlag, 1987, pp. 371–388.

[12] Mazurkiewicz, A. Introduction to trace theory. In The Book of Traces, V. Diekert and G. Rozen-
berg, Eds. World Scientific, 1995, pp. 3–41.

[13] Perrin, D., and Pin, J.-E. Mots infinis. Tech. Rep. LITP Report 93.40, Institut Blaise Pascal,
Université Paris VII, 1993.

[14] Perrin, D., and Pin, J.-E. Infinite Words. Automata, Semigroups, Logic and Games. No. 141 in
Pure and Applied Mathematics. Elsevier, 2004.

[15] Redziejowski, R. R. Adding an infinite product to a semigroup. In Automata Theory: Infinite
Computations, K. Compton, J.-E. Pin, and W. Thomas, Eds., no. 28 in Dagstuhl Seminar Report.
Internationales Begegungs- und Forschungszentrum für Informatik Schloss Dagstuhl, 1992, p. 9.

[16] Redziejowski, R. R. On associative omega-products. Fundamenta Informaticae 60, 1-4 (2004),
333–350.

[17] Redziejowski, R. R. Associative omega-products of traces. Fundamenta Informaticae 67, 1-3
(2005), 175–185.

10

