
Infinite Product of Traces Represented by Projections∗

Roman R. Redziejowski

Abstract

The construction of an associative ω-product of traces from an earlier paper is revisited using pro-
jection representation of traces. Using projections instead of trace prefixes results in very simple
definitions and proofs.

1 Introduction

One way of describing behavior of concurrent systems is by means of ”traces” introduced by
Mazurkiewicz [10–12]. The analysis of systems that do not stop is naturally reduced to considering
their infinite behavior. This leads to the notion of an infinite trace. An intimately related notion is
that of an infinite concatenation, or ”ω-product”, of finite traces, which describes behavior of an infinite
sequence of processes.
Neither of these two notions has an immediately obvious definition. Finite trace is a set of finite words

that can be transformed into each other by commuting certain ”independent” letters. An infinite trace
involves an infinite number of such commutations. When two finite traces are concatenated, indepen-
dent letters can ”migrate” between the two components as the result of commutations. In an infinite
concatenation we may have infinite such migrations.
The two notions, however, have some intuitively obvious properties that must be satisfied by their

definition. First, an infinite trace should in some way be the limit of its initial portions. Second, the
infinite product should similarly be the limit of partial products. Third, the result of an ω-product of
finite traces should be an infinite trace. Finally, the ω-product should be associative, that means, the
result should not change if some factors are concatenated before applying the infinite operation.
The idea of infinite trace being the limit of its prefixes has been exploited in the definitions of infinite

trace given by Mazurkiewicz [11], Kwiatkowska [7, 8], and Gastin [4, 5], the last two being essentially
identical. In [4], Gastin has also defined the ω-product of traces as the limit of partial products.
In [15], the present author attempted to construct an ω-product of traces starting from the requirement

of associativity. It was a rather complicated construction in terms of trace prefixes, using ideas from [14].
The associativity itself does not determine the ω-product. An additional requirement that the product
be ”maximal” fixes it up to isomorphism. The paper suggested four different (but isomorphic) versions of
such maximal product. Defining infinite trace as the result of the ω-product gave four different definitions
of infinite trace, two of them identical to those from [11] and [4, 5, 7, 8], respectively.
The present paper is inspired by an observation that both the infinite trace and infinite concatenation

of traces have simple definitions in terms of projections. An infinite trace is an infinite set of infinite
words, while its projection is only a finite set of infinite words, which is much easier to handle. In
particular, the concatenation of traces corresponds to concatenation of projections, and thereby to an
ordinary concatenation of words.
The representation of traces by projections was used by, for example, Cori and Perrin [1], Diekert [2],

Gastin [4,5], Kwiatkowska [7–9], and Shields [16,17]. It is very naturally extended to yield the definition
of an infinite trace. In fact, infinite trace was first defined in this way by Flé and Roucairol [3]. The
definition was recently used by Mikulski [13].
We begin, in Section 2, by recalling the basic definitions and facts concerning traces. We proceed then,

in Section 3, to projections, and to projection representation of traces in Section 4. In Section 5, we recall
how infinite trace is defined in terms of projections. In Section 6, we define the ω-product of traces, and

∗Appeared in Fundamenta Informaticae 101, 1-2 (2010) 105–113.

1

in subsequent two sections check that it is associative and maximal. The Appendix contains proofs of
two, rather technical, facts about projections.

2 Words and traces

An alphabet A is a finite nonempty set of letters. A word is a finite or infinite string of letters. The
number of letters in a finite word x is called its length and is denoted by |x|. The word of length 0 (the
”empty word”) is denoted by ε. The set of all finite words is denoted by A∗, and the set of all words
by A∞.
Concatenation of words x ∈ A∗ and y ∈ A∞ is the word obtained by appending y at the end of x. It is

denoted by xy. The word obtained by joining an infinite sequence of finite words x1, x2, x3, . . . one after
another is denoted by x1x2x3 Word y ∈ A∗ is a prefix of word x ∈ A∞, denoted y ≤ x, if x = yz for
some z ∈ A∞.
Traces are equivalence classes of certain congruence relation ≡ on the semigroup (A∗, ·), where · is

concatenation of words. This congruence is defined by a symmetric and irreflexive independence relation
I ⊆ A×A. It is the smallest congruence ≡ such that (a, b) ∈ I ⇒ ab ≡ ba. A trace consists thus of words
that can be transformed into each other by commuting independent letters.
The trace containing word x ∈ A∗ is denoted by [x]. The set of all traces is denoted by T.
Relation ≡ being a congruence means that there exists quotient operation · , the trace product, defined

by [x] · [y] = [xy] for [x], [y] ∈ T. The trace product is associative and cancellative.

3 Projections

A projection of word x ∈ A∞ on a sub-alphabet α ⊆ A, denoted by pα(x), is the word obtained by
deleting from x all letters not in α. One can easily see that

x ≤ y ⇒ pα(x) ≤ pα(y), (1)

pα(x)pα(y) = pα(xy) , (2)

pα(x1)pα(x2)pα(x3) . . . = pα(x1x2x3 . . .) , (3)

pα(y) = pα(pβ(y)) , (4)

for any α ⊆ β ⊆ A, x ∈ A∗, y ∈ A∞, and xi ∈ A∗.
For a family C ⊆ 2A of sub-alphabets, the projection of x ∈ A∞ on C, denoted by PC(x), is the set of

projections of x on all members of C. More precisely, it is a mapping that assigns pα(x) to each α ∈ C.
We view it as a vector of words indexed by C. We write PC(x) ≤ PC(y) and PC(x) = PC(y) to mean
that, respectively, pα(x) ≤ pα(y) and pα(x) = pα(y) for each α ∈ C.

In the following, we consider projections on a family C of ”cliques”.
Define D to be the complement (A×A)− I of the independence relation. A clique is a subset α ⊆ A

such that α× α ⊆ D, that is, (a, b) /∈ I for all a, b ∈ α.
A clique covering is a family of cliques such that

∪
α∈C(α×α) = D, that is:

(a, b) /∈ I ⇔ ∃α∈C({a, b} ⊆ α) . (5)

Because I is irreflexive, each {a} for a ∈ A is included in some α ∈ C, so C is a covering of the alphabet
A. Notice that, in particular, {a} is a clique for each letter a.
In general, there exist several different clique coverings for a given alphabet A and independence relation

I. For our purpose, they are all equivalent in the following sense:

Proposition 1. Let C be any clique covering, and β ⊆ A any clique, not necessarily a member of C.
For any x, y ∈ A∞ holds PC(x) = PC(y) ⇒ pβ(x) = pβ(y).

(Proof is found in the Appendix.)

From now on, we consider an arbitrary clique covering C that will remain fixed for the rest of the
discussion. We omit the index C and write P (x) to mean PC(x).

2

4 Projection representation of traces

A clique consists of letters that are all mutually dependent. As such, they do not commute, and must
appear in the same sequence in all words belonging to the same trace. This sequence, obtained as
projection on the clique, is thus an invariant of the trace. One may expect that the trace is fully defined
by a set of such invariants. Indeed, the following fundamental result was published at about the same
time by Shields [17] (Theorem 3.2.8) and Cori-Perrin [1] (Proposition 1.1):

Proposition 2. For any x, y ∈ A∗, P (x) = P (y) ⇔ x ≡ y.

It means that trace [x] consists of all words having the same projection vector as x. A trace is thus
identified by a single projection vector. This is the projection representation of trace.

With traces representing concurrency, cliques represent sequential processes, and projection on a clique
is the sequence of operations (the ”history”) of such process. In [17], Shields starts with subalphabets
representing processes and uses formula (5) to derive independence relation that turns them into cliques
(Lemma 3.2.2). Kwiatkowska [8] uses a similar construction for what she calls ”alphabet structure”, and
remarks that different alphabet structures represent different decompositions into sequential processes.

5 Infinite trace

Proposition 2 can be taken as an alternative definition of the equivalence ≡ . It extends naturally to
infinite words by defining:

x ≡∞ y ⇔ P (x) = P (y) for x, y ∈ A∞ . (6)

Proposition 1 ensures that this definition does not depend on the clique covering used.
The notion of trace can be now extended to mean an equivalence class of ≡∞ in A∞. We keep the

notation [x] for the trace containing x ∈ A∞:

[x] = {y ∈ A∞ |P (y) = P (x)} for x ∈ A∞ . (7)

One can easily see that for an infinite word x, [x] is a set of infinite words. This is the infinite trace.
The set of all traces, finite and infinite, is in the following denoted by T∞.
The trace product is naturally extended to infinite traces by defining

[x] · [y] = [xy] for [x] ∈ T and [y] ∈ T∞. (8)

We note that this definition does not depend on the choice of words x and y used to represent the
traces [x] and [y]. According to (7), [xy] consists of words having projection vector identical to P (xy).
According to (2), each component pα(xy) of that vector is equal to pα(x)pα(y), which, according to (7),
does not change if x is replaced by x′ ∈ [x] and y by y′ ∈ [y].

The definition (7) of infinite trace has been given by a number of authors [3–9, 13]. They handle its
uniqueness in two different ways. Some [3,13] use a unique clique covering that consists of singletons and
pairs. Other define the infinite trace first in terms of prefixes, and then prove it is identical to one defined
from projections. Gastin and Petit [6] remark that otherwise one would have to prove independence of
(6) from the clique covering used. This is provided here in the form of Proposition 1.

6 Infinite product of traces

An infinite concatenation of finite traces [x1], [x2], [x3], . . . can be seen as an infinite application of trace
product: [x1] · [x2] · [x3] · The problem is, we do not know how to apply the binary operator ’·’
infinitely many times. As mentioned in the Introduction, one possible approach is to take the limit of
partial products [x1] · . . . · [xn] for n → ∞ .

3

We take here a different approach and view infinite concatenation as application of a new operator
π that maps infinite sequences of traces into traces. According to this view, [x1] · [x2] · [x3] · . . . is an
informal way to write π(x) where x is the sequence [x1], [x2], [x3], We refer to the operator π as the
infinite product, or the ω-product of traces. It remains to define the mapping π.

By analogy to [x] · [y] = [xy], it is natural to have [x1] · [x2] · [x3] · . . . = [x1x2x3 . . .] . We define thus:

π([x1], [x2], [x3], . . .) = [x1x2x3 . . .] for [x1], [x2], [x3], . . .∈ TN, (9)

where TN is the set of all infinite sequences of finite traces. We note that this definition does not depend
on the words xi used to represent the traces [xi]. Written more explicitly, (9) is:

π([x1], [x2], [x3], . . .) = {x ∈ A∞ |P (x) = P (x1x2x3 . . .)} . (10)

According to (3), each component of the vector P (x1x2x3 . . .) is equal to pα(x1)pα(x2)pα(x3) . . . , which,
according to (7), does not change if xi is replaced by x′

i ∈ [xi] for i > 1.

If infinitely many among xi are not empty, x1x2x3 . . . is an infinite word, and π([x1], [x2], [x3], . . .) is
an infinite trace. Otherwise x1x2x3 . . . is a finite word and π([x1], [x2], [x3], . . .) is a finite trace. We have
thus π : TN → T∞.

7 The infinite product π is associative

Associativity of an operator has the effect that the result is not affected by different groupings of op-
erations. We exploit this property to define the associativity of π. To speak about associativity of an
infinitary operator, we must consider infinite grouping. We are thus going to say that π is associative if
it has these properties:

[x1] · [x2] · [x3] · . . . = [x1 . . . xn1] · [xn1+1 . . . xn2] · [xn2+1 . . . xn3] · . . . , (11)

[x1] · [x2] · [x3] · . . . = [x1 . . . xn] · [xn+1xn+2xn+3 . . .] , (12)

for any [x1], [x2], [x3], . . .∈ TN, n ≥ 1, and ascending sequence n1, n2, n3, . . . of natural numbers.

By applying (9), we find that the right-hand side of (11) is equal to:

[(x1 . . . xn1)(xn1+1 . . . xn2)(xn2+1 . . . xn3) . . .] = [x1x2x3 . . .] ,

which is identical to the result of [x1] · [x2] · [x3] · This shows that the ω-product π satisfies (11).
According to (8), the right-hand side of (12) is equal to:

[(x1 . . . xn1)(xn+1xn+2xn+3 . . .)] = [x1x2x3 . . .] ,

which is identical to the result of [x1] · [x2] · [x3] · The ω-product π satisfies thus also (12) and is
associative according to our definition.

8 The infinite product π is maximal

We shall say that an associative ω-product is maximal if two sequences have the same product only when
this is required by associativity.
We used above the informal representation of π to define associativity. For a more formal

statement, let us say that sequence y = [y1], [y2], [y3], . . . ∈ TN is a contraction of sequence
x = [x1], [x2], [x3], . . . ∈ TN, denoted by x ◃ y, if there exists an ascending sequence of natural num-
bers n1, n2, n3, . . . such that

[y1] = [x1 · · ·xn1] and [yi] = [xni−1+1 · · ·xni] for i > 1 .

The property (11) can be now stated as

x ◃ y ⇒ π(x) = π(y) for x,y ∈ TN .

4

Define x ∼ y to mean that sequences x,y ∈ TN can be transformed into each other in a finite number
of steps using contraction or its opposite. More precisely, there exist sequences z1, z2, . . . , zk such that
x = z1, y = zk, and either zi ◃ zi+1 or zi+1 ◃ zi for 1 ≤ i < k.
From associativity follows x ∼ y ⇒ π(x) = π(y). The ω-product π is maximal if it also satisfies the

opposite implication, that is,

x ∼ y ⇔ π(x) = π(y) for x,y ∈ TN . (13)

To demonstrate that π is maximal, we need an auxiliary result about projections:

Lemma 1. Let u, v ∈ A∞ be such that P (u) = P (v). For any x, y ∈ A∗ such that x ≤ u, y ≤ v, |x| < |y|,
there exists z ∈ A∗ such that [x] · [z] = [y].

(Proof is found in the Appendix.)

Proposition 3. The ω-product π defined by (9) is maximal.

Proof. Let x = [x1], [x2], [x3], . . . ∈ TN and y = [y1], [y2], [y3], . . . ∈ TN be such that π(x) = π(y).

If π(x) = π(y) is a finite trace, only finitely many among xi, respectively yi, are different from ε, and
we have x ◃ [u], [ε], [ε], [ε], . . . and y ◃ [w], [ε], [ε], [ε], From (9) we have [u] = [w], showing that
x ∼ y.

Suppose now that π(x) = π(y) is an infinite trace, meaning that both x1x2x3 . . . and x1x2x3 . . . are
infinite words. According to (10) we have P (x1x2x3 . . .) = P (y1y2y3 . . .).

Take any n1 ≥ 1 and denote x1 . . . xn1 = z1.

Take any m1 such that |y1 . . . ym1 | > |x1 . . . xn1 |. This is always possible because y1y2y3 . . . is infinite.
We have x1 . . . xn1 ≤ x1x2x3 . . . and y1 . . . ym1 ≤ y1y2y3 By Lemma 1, there exists z2 ∈ A∗ such
that [x1 . . . xn1] · [z2] = [y1 . . . ym1].

Take now any n2 such that |x1 . . . xn2 | > |y1 . . . ym1 |. By the same argument as before, there exists z3
such that [y1 . . . ym1] · [z3] = [x1 . . . xn2].

This can be repeated indefinitely to produce sequences n1, n2, n3, . . . , m1,m2,m3, . . . , and z1, z2, z3, . . .
such that

[x1 . . . xni] · [z2i] = [y1 . . . ymi] ,

[y1 . . . ymi] · [z2i+1] = [x1 . . . xni+1] ,

for all i ≥ 1. By left-cancellation, we have, for all i > 1:

[xni−1+1 . . . xni] = [z2i−2 z2i−1] ,

[ymi−1+1 . . . ymi] = [z2i−1z2i] .

This can be illustrated as follows:

[x1. . . xn1] [xn1+1 [xn2+1 [xn3+1

[y1 [ym1+1 [ym2+1

xn2] xn3]

ym1] ym2]

.

.

. . .

. . .

. . .

[z1] [z2] [z3] [z4] [z5]

Denote z = z1, z2, z3, . . . , p = [z1], [z2z3], [z4z5]. . . . , and q = [z1z2], [z3z4], [z5z6], One can easily see
that x ◃ p ▹ z ◃ q ▹ y, showing that x ∼ y.

5

9 The infinite product π is unique up to isomorphism

As stated in the introduction, a maximal ω-product is unique up to isomorphism. To explain what we
mean by this, consider an ω-product as a pair (V, π) consisting of a set V of values and a surjective
mapping π : TN → V . We shall say that ω-products (V1, π1) and (V2, π2) are isomorphic to mean that
there exists a bijection φ : V1 → V2 such that φ(π1(x)) = π2(x) for all x ∈ TN.

One can easily verify that any two maximal ω-products are isomorphic. Suppose (V1, π1) and (V2, π2)
are maximal. For v ∈ V1 define φ(v) = π2(x), where x ∈ TN is any sequence such that π1(x) = v. Because
π1 is surjective, such x always exists. The result does not depend on the choice of x: if π1(x) = π1(y),
we have, by (13), x ∼ y and π2(x) = π2(y). The function φ is thus uniquely defined and satisfies
φ(π1(x)) = π2(x). Suppose φ(v) = φ(v′). That means π2(x) = π2(y) for some x,y such that v = π1(x),
v′ = π1(y). By (13), we have x ∼ y and v = v′, showing that φ is a bijection.

The ω-product π being maximal means that it is isomorphic to all ω-products defined in [15]. It is, in
fact, identical to one of them.

10 Conclusions

The definition of an ω-product of traces in terms of projections is simple and intuitive. The associativity
follows trivially from associativity of the infinite concatenation of words.
The constructions in [15] using trace prefixes, and the definition as upper bound of partial products

in [4] are very complex in comparison.

6

Appendix

Proof of Proposition 1

Let C be any clique covering, and β ⊆ A any clique, not necessarily a member of C. Let x, y ∈ A∞ be
such that PC(x) = PC(y), meaning that pα(x) = pα(y) for all α ∈ C.
We show first that x and y have identical projections on any {a} ⊆ β and {a, b} ⊆ β.

As found before, each {a} ⊆ α for some α ∈ C. By β being a clique, we have (a, b) /∈ I for each {a, b} ⊆ β,
and, by (5), {a, b} ⊆ α for some α ∈ C. Using the respective α and (4), we find

p{a}(x) = p{a}(pα(x)) = p{a}(pα(y)) = p{a}(y) , (14)

p{a,b}(x) = p{a,b}(pα(x)) = p{a,b}(pα(y)) = p{a,b}(y) . (15)

Suppose now that pβ(x) and pβ(y) have identical prefix z of length n. This is true for n = 0. Consider
any n ≥ 0. There are four possibilities:

(a) pβ(x) = z = pβ(y).
(b) pβ(x) = z and pβ(y) = zau for some a ∈ A and u ∈ A∞. (Exchange x and y if the inverse holds.)

Clearly, {a} ⊆ β. From (2) and (4) we have
p{a}(y) = p{a}(z)ap{a}(u) ̸= p{a}(z) = p{a}(x), which contradicts (14).

(c) pβ(x) = zau and pβ(y) = zbv for some a, b ∈ A, a ̸= b and u, v ∈ A∞.
Clearly, {a, b} ⊆ β. From (2) and (4) we have
p{a,b}(x) = p{a,b}(z)ap{a,b}(u) ̸= p{a,b}(z)bp{a,b}(v) = p{a,b}(y),
which contradicts (15).

(d) pβ(x) = zau and pβ(y) = zav for some a ∈ A and u, v ∈ A∞. That means pβ(x) and pβ(y) have
identical prefix of length n+ 1.

Thus, only (a) and (d) are possible, and pβ(x) = pβ(y) follows by induction on n.

Proof of Lemma 1

Let u, v ∈ A∞ be such that P (u) = P (v). Let x, y ∈ A∗ be such that x ≤ u, y ≤ v, and |x| < |y|.
Consider any α ∈ C. We have pα(u) = pα(v) = w. Applying (1) to x ≤ u, y ≤ v, we obtain pα(x) ≤ w,

pα(y) ≤ w. That means either pα(x) ≤ pα(y) ≤ w or pα(y) ≤ pα(x) ≤ w. This second possibility is
excluded by |x| < |y|, so we have pα(x) ≤ pα(y) ≤ w. As this holds for all α ∈ C, we have P (x) ≤ P (y).
The following fact appears in slightly different forms as Lemma 3.2.9 in [17], Proposition 3.4.12 in [8],

and Proposition 1.3 in [4]:

”For any x, y ∈ A∗ such that P (x) ≤ P (y) exists z ∈ A∗ such that P (xz) = P (y)”.

As P (xz) = P (y) means [x] · [z] = [y], this ensures that the required z exists.

7

References

[1] Cori, R., and Perrin, D. Automates et commutations partielles. RAIRO Informatique Théorique
et Applications 19, 1 (1985), 21–32.

[2] Diekert, V. Combinatorics on Traces. No. 454 in Lecture Notes in Comp. Sci. Springer-Verlag,
1987.

[3] Flé, M., and Roucairol, G. Maximal serializability of iterated transactions. Theoretical Comp.
Sci. 38 (1985), 1–16.

[4] Gastin, P. Infinite traces. In Semantics of Systems of Concurrent Processes, I. Guessarian, Ed.,
no. 469 in Lecture Notes in Comp. Sci. Springer-Verlag, 1990, pp. 277–308.

[5] Gastin, P. Un modèle asynchrone pour les systèmes distribués. Theoretical Comp. Sci. 74 (1990),
121–162.

[6] Gastin, P., and Petit, A. Infinite traces. In The Book of Traces, V. Diekert and G. Rozenberg,
Eds. World Scientific, 1995, pp. 393–486.

[7] Kwiatkowska, M. Z. Event fairness and non-interleaving concurrency. Formal Aspects of Com-
puting 1, 3 (1989), 213–228.

[8] Kwiatkowska, M. Z. Fairness for non-interleaving concurrency (PhD Thesis). Tech. Rep. 22,
University of Leicester, Department of Computing Studies, May 1989.

[9] Kwiatkowska, M. Z. Defining process fairness for non-interleaving concurrency. In FSTTCS
(1990), K. V. Nori and C. E. V. Madhavan, Eds., vol. 472 of Lecture Notes in Computer Science,
Springer, pp. 286–300.

[10] Mazurkiewicz, A. Concurrent program schemes and their interpretations. Tech. Rep. DAIMI
PB-78, Comp. Sci. Dep., Århus Universitet, 1977.

[11] Mazurkiewicz, A. Trace theory. In Petri Nets: Applications and Relationships to Other Models
of Concurrency, W. Brauer, W. Reisig, and G. Rozenberg, Eds., no. 255 in Lecture Notes in Comp.
Sci. Springer-Verlag, 1987, pp. 371–388.

[12] Mazurkiewicz, A. Introduction to trace theory. In The Book of Traces, V. Diekert and G. Rozen-
berg, Eds. World Scientific, 1995, pp. 3–41.

[13] Mikulski, L. Projection representation of Mazurkiewicz traces. Fundamenta Informaticae 85, 1-4
(2008), 399–408.

[14] Redziejowski, R. R. On associative omega-products. Fundamenta Informaticae 60, 1-4 (2004),
333–350.

[15] Redziejowski, R. R. Associative omega-products of traces. Fundamenta Informaticae 67, 1–3
(Aug. 2005), 175–185.

[16] Shields, M. W. Adequate path expressions. In Semantics of Concurrent Computation (1979),
G. Kahn, Ed., vol. 70 of Lecture Notes in Computer Science, Springer-Verlag, pp. 249–265.

[17] Shields, M. W. Concurrent machines. Comput. J. 28, 5 (1985), 449–465.

8

