An improved construction of deterministic omega-automaton
using derivatives®

Roman R. Redziejowski

Abstract

In an earlier paper, the author used derivatives to construct a deterministic automaton recognizing
the language defined by an w-regular expression. The construction was related to a determinization
method invented by Safra. This paper describes a new construction, inspired by Piterman’s improve-
ment to Safra’s method. It produces an automaton with fewer states.

In addition, the presentation and proofs are simplified by going via a nondeterministic automaton
having derivatives as states.

1 Introduction

In 1964, Brzozowski [1] presented an elegant construction leading from a regular expression directly
to a deterministic automaton recognizing the language denoted by that expression. The construction,
based on the notion of a derivative, has been recently re-examined and improved by Owens, Reppy and
Turon [2].

The notion of a derivative is easily extended to w-languages. But, Brzozowski’s construction does not
work for w-regular expressions: the automaton constructed from derivatives has, as a rule, too few states.

In an earlier paper [4], the author used derivatives to construct a deterministic automaton recognizing
the language defined by an w-regular expression. The states of this automaton are certain combinations
of derivatives. They are analogous to trees appearing in the determinization algorithm invented by
Safra [5,6]. Recently, Piterman [3] improved the Safra’s method in a way that reduces the maximum
possible number of states from Safra’s (12)"n?" to 2n"n!. This paper exploits the Piterman’s idea to
improve the construction from [4].

It should be noted that, as in [4], we use here a new kind of acceptance condition for w-automata. All
standard acceptance conditions (Biichi, Rabin, Muller, Streett) are defined in terms of visits to states.
Instead, we use here transitions that are (or are not) taken infinitely often. This makes the construction
simpler, and further reduces the number of states.

2 Omega-regular languages and their derivatives

We assume a finite alphabet 3 of letters. A sequence of letters from X is called a word (over X). A word
can be finite or infinite, meaning a finite or infinite sequence of letters. The sequence of 0 letters is called
the empty word and is denoted by €. The set of all words is denoted by X°°, the set of all finite words
by ¥*, the set of all finite words other than € by X7, and the set of all infinite words by ¥*. Any subset
of ¥ is called a language.

The derivative of a language X C 3°° with respect to a word w € ¥*, denoted by 0,, X, is the set of
words obtained by stripping the initial w from words in X starting with w:

OwX ={2€3%|wz e X}.

(We follow here [2] in using the symbol 0 for derivative.) Any finite initial portion of a word z € ¥ is
called a prefix of x. The set of all prefixes of words in a language X C ¥*° is denoted by pref(X). One
can easily see that 0,,X # @ if and only if w € pref(X).

*Final version appeared in Fundamenta Informaticae 119, 3-4 (2012) 393-406.

We use these operations on languages, and assume the reader to be familiar with their properties:

union XUuY for X C XY C X%,
product XY ={zy|lz e X,ycY} for X C X" Y C X,
star X*=eUXUX?UX3U... for X C X",

omega XY ={xjxows... |x; € X fori > 1} for X C 2.

A regular language (over alphabet ¥) is any language constructed from elementary languages &, {c},
and {a} for a € X by finitely many applications of star, product and union. We assume that regular
language is always given by an expression specifying this construction. Such expression is referred to
as a regular expression. Unless indicated otherwise by means of parentheses, the operators in a regular
expression are applied in this order: star, product, union. We customarily omit braces around ¢ and a
when it does not lead to an ambiguity.

An w-regular language is any language of the form

UXiv =X Y UXo VP U UX, VY, (*)
i=1

where n > 1, X; is a regular language, and Y; is a nonempty regular language not containing e, for
1 <4 < n. Again, we assume that an w-regular language is always given by an expression of the form
(*) or one that can be reduced to that form by means of known properties of the operations. Such an
expression is an w-reqular expression.

We shall need two helper functions: v(X) = X N{e} and ¢(X) = (& if X = @ or {e} otherwise). The
first is used in the computation of derivatives, and the second to test emptiness of derivatives. They can
be computed for any (w-)regular language by a recursive application of these rules:

v(@)=v({a}) =2, v(XUY)=v(X)ur(y), v(X*)=e,
vie)=¢, v(XY)=v(X)v(Y), V(X)) =92.
¢(e) = ¢(a) = ¢, PXUY) =p(X)Ue(Y), (X)) =¢,
$(2) =2, H(XY) = ¢(X)o(Y), (X*) = o(X).

Derivatives of an (w-)regular language are obtained by a recursive application of these rules, where
a,beX, a#b weX*:

0:X =X, aa{b}:®7 aaX*:(aaX)X*a
0.0 = 0ufe} = @, Bu(XUY) =0, XUd,Y, 0u X" = (0uX)X* |
Ou{a} =€, 0,(XY) = (0, X)Y Ur(X)(8,Y), OwaX = 0g(0wX) .

All these rules except one for X“ were obtained by Brzozowski in [1]; that for X* is obtained in a similar
way. One can easily see that the derivative is always an (w-)regular language. It has been shown in [1]
that each regular language has only a finite number n of distinct derivatives, and all of them are found
among derivatives with respect to words not longer than n — 1.

This result is easily extended to w-regular languages. Thus, all distinct derivatives of an w-regular
language can be obtained by repeatedly applying the rule 0(,q)X = 94(9,X) to longer and longer words
w until no more distinct derivatives are found. However, the procedure yields w-regular expressions,
and it is often not trivial to decide whether two expressions denote the same language. As shown by
Brzozowski, the procedure for a regular language will still end if we can recognize equality using only
the basic properties of union (idempotent, commutative, associative). This result is also easily extended
to w-regular languages. It means that we can always effectively obtain expressions for all derivatives,
although some of them may denote the same language. We can often eliminate such duplicates using
other known properties of the operations.

3 Automata

We define a finite-state automaton informally, as a machine that can assume a finite number of distinct
states. One state is identified as the initial state. The machine is started in the initial state and reads
an infinite word w € X¢, letter by letter. Each letter causes a transition to another, or possibly the
same, state. This is usually represented by a graph where nodes represent the states and directed edges
represent the transitions, as shown in Fig. 1. Each transition is labeled by the letter that causes it. The
initial state is pointed to by an arrow. (The label a,b in the Figure is a shorthand for two transitions
labeled, respectively, a and b.)

b /G a/G a,b aje

o O AR
*‘T@ *—’@

(@ Pig. 1 (v

The automaton is deterministic if all transitions from the same state have different labels, as is the
case in Fig. 1(a). Otherwise the automaton is nondeterministic, as is the case in Fig. 1(b).

The action of the automaton when it reads a word w is represented by a path with labels along the path
spelling out the word w. We refer to it as the run of the automaton on w. A deterministic automaton
has at most one run for a given word; a nondeterministic has usually many such runs.

We say that an automaton accepts a word w € X% if it has an accepting run on w. We say that an
automaton recognizes a language X C 3¢ if it accepts exactly the words belonging to X.

Traditionally, an accepting run is defined in terms of the sequence of states traversed by the automaton.
In this paper, we define an accepting run in terms of transitions used by that run. To identify transitions,
we attach some arbitrarily chosen tags to them.

In Fig.1, the tags are shown after a slash. Thus, for the automaton (a) in Fig. 1 we used the tags G
and R. We can define an accepting run as one using infinitely many G-transitions and only finitely many
R-transitions. One can easily see that the automaton recognizes then the language (aUb)*(a¥ Ub%). For
the automaton (b) in Fig. 1, we chose e as the only tag. We can define an accepting run to be one that
uses the e-transition infinitely many times. The automaton recognizes then the language (a U b)*a®“.

It is convenient to say that a transition emits its tag when it occurs. Expressed in this way, an accepting
run in case (a) is one that emits G infinitely often and R finitely often, and an accepting run in case (b)
is one that emits e infinitely many times.

4 Derivative automaton

Brzozowski’s construction [1] is based on this observation: suppose you want to check if the input belongs
to given language X. You read a as the first input letter. Then, it remains to check whether the rest
belongs to 9,X. This gives an automaton where each state checks the input for belonging to a specific
derivative D of X, and a transition on letter a from that state leads to the state checking for 9, D.

Unfortunately, this construction does not work for w-regular languages. Take as an example
X = (aUb)*(a¥ U (ab)¥). We have 9,X = 9pX = X, and the automaton constructed as above
has only one state and two transitions. They are too few to specify an accepting run recognizing X. We
attack the problem here by distinguishing the derivatives that open the w-operator.

Let X = U?=1 P; Q¥ be any w-regular language over .

Let § be an arbitrary symbol not in . Define X’ = |JI'_, P;(#Q;)“. This is an w-regular language over
the alphabet X U {f}.

Let D be a set of expressions for nonempty derivatives of X’ including all derivatives with respect
to words over ¥ U {t} that do not end with . From the way the derivatives are computed, we have
all relations of the form Dy = 0,D1 and Dy = O 4Dy for D1, Do € D and a € ¥. Let D(X) be an
automaton defined as follows:

(D1) The states correspond to the elements of D. For D € D, we use D interchangeably to mean the
expression D, the derivative represented by it, and the corresponding state of D(X).

(D2) For each pair Dy, Dy € D such that 9,D; = D5 for a € ¥, there is a transition D; —%+ Ds.

(D3) For each pair Dy, D2 € D such that 8(ua)D1 = D, for a € 3, there is a transition Dy a—/.> Ds.

(D4) The initial state is Dy = 9. X’ = X'.

(D5) An accepting run is one that emits e infinitely many times.

The automaton D(X) is in the following referred to as the derivative automaton for X.

As an example, take X = (aUb)*(a¥ U(ab)“). We have X’ = (aUb)*((fa)*U(fab)“). The nonempty
derivatives with respect to words not ending with f, and the relations between them are:

Dy =0.X"=X'; Dy = 0aDg = 0 Do;
Dy = 83.X" = (fa)” U b (fab)*; Dy = 04aDo;
Dy = 0yap X’ = (fab)*; Do = 4Dy = 0y Da;
D3 = OapaX’ = (f2)”; D3 = 04aD1;
Dy = DyabgaX' = b (fab)~. Dy = 0;aDs.

The derivative automaton for X is shown in Fig. 2.

a/e

-

‘ afe

g
~(E)—= @)= ()

Fig. 2

a,b

In a while, we are going to show that D(X) accepts X. But, one can easily see that the derivative
automaton is, as a rule, nondeterministic. In the sections that follow, we shall use it to construct a
deterministic automaton for X.

For a path in D(X), define its label to be the sequence of input letters along the path. Define its
extended label to be the same sequence, with f inserted before each letter that emits .

Lemma 1. Let v be a word over ¥ U {#} not ending with §.
(a) If there exists a path with extended label v from state Dy to state Dy of D(X) then Dy = 0,D;.
(b) If 0,D1# 2, there exists a path with extended label v from state Dy of D(X) to state Dy = 8, D;.

Proof. By induction on the length of v using (2) and (3) in the definition of D. O
Proposition 1. The derivative automaton D(X) accepts word w € ¥¢ if and only if w € X.

Proof. (1) Suppose w € X, that is, w € P,Q% for some k. We have thus w = pgi¢2qs3 ... where p € Py
and q; € Qp for i > 1. Let v = pfqifigafigs... . Let m > 1; denote v,, = ptiqr...tqm. The
derivative 0, (Pr(§Qx)*) is nonempty; because P (f Q) C X', so is the derivative 9, X' = 0,, Dy.
By Lemma 1b, exists a path from Dy to D,, = 0,,, Do with extended label v,,. Let vp41 = U @t
The derivative 0g,, ,, Dy = Oy, ,, X’ is nonempty for the same reason as 0,,, X'. So, by Lemma 1b exists
a path from D, to Dy,41 = Oy,,,, D with extended label g,,1. It is a continuation of the path to Dy,
and its label. By repeating this step, we obtain an infinite path from Dy with extended label v, and
non-extended label w. Each letter in that path that follows # emits e . It is thus an accepting run on w.

(2) Suppose there is an accepting run on w — a path from Dy with label w. Let v be the extended
label of this path. It contains infinitely many occurrences of f, so v = uy fus fus.... For some m > 1,

let v, = us fusf...fum fa, where a is the first letter of u,,+1. Word v,, is the extended label of a path

that leads from Dy to some state D,,. By Lemma la, D,, = 0, Do = 0,,, X'. As D,, is included among
states of I, this derivative is nonempty, so v, € pref(X’). It means that there exists at least one k,
1 > k > n, such that v, € pref(Py(# Qx)¥). Let K,, be the set of all such k. As this set is nonempty
for all m > 1, one value k must appear in all K,, for m > 1. Let now k be such value, so for every
m>1, vy, =uyfust... . funtais a prefix of some word in Py (f Q)*. This is only possible if u; € Py
and u; € Q for i > 1. Hence, w = ujugus ... € P,Q% C X.

O

5 The run tree
All the possible actions of D(X) when reading a given word can be represented by a directed tree like this

in Fig. 3, which shows the possible actions of the automaton from Fig.2 when reading the infinite word
w = ababaa... .

level 1

1N

w)
=n

4 \\

U NN

oo @) @) @ @
e \°

U NN

Fig. 3

N

The Figure shows that, when reading a in the initial state Dy, D(X) can either take a transition back
to Dy without emitting e, or a transition to D; and emit o. These transitions are represented by the
directed edges in Fig. 3, with e marking the transition that emitted . The nodes at level 2 represent
the possible states after reading the first letter. When reading b in any of these states, the automaton
has no choice, and takes a transition to Dg, respectively Ds. These states, appearing at level 3, are the
possible states of D(X) after reading the first two letters. In general, the nodes at level I represent the
possible states after reading [— 1 letters, resulting from all possible choices made on the way.

In the following, we refer to a tree like that in Fig.3 as a run tree, and denote by T(X,w) the run
tree of D(X) for a word w € £“. One can easily see that the automaton accepts w if an only if T(X, w)
contains a path marked with infinitely many e. In the following, we call it a live path.

We need a way to decide if T(X,w) contains live path. To do this, you cannot just go down from the
root and choose an edge marked with e whenever available. It may lead to a dead end such as D4 on
level 6, while a more careful choice would allow you to continue indefinitely. The problem of detecting

a live path in a tree is discussed in some detail in Section 5 of [4]. We adopt the method used there
that consists of enclosing the nodes on each level of T(X,w) in pairs of brackets. The general idea is
that a pair of brackets encloses descendants of some common ancestor. (We assume the tree drawn so
that the descendants of each node appear contiguously under that node.) Additional nested brackets are
introduced around each node that has been reached via an edge marked with e. When all inner nodes
for some pair of brackets have additional brackets around them, we remove these brackets and signal a
7green event” for the outer pair.

If the same pair of brackets has a green event infinitely often, we have a live path. The problem is to
identify ”the same pair”. We use for this purpose numbers on the brackets. As the numbers should not
grow indefinitely, they have to be reused after the enclosed node does not have any descendants. This is
a "red event” for the pair, indicating that its number will be used in the future for entirely different pair.

As the tree branches out indefinitely, some levels will contain multiple occurrences of the same state,
like D5 on levels 5. The subtrees rooted at these duplicate occurrences are isomorphic, so we need to
investigate only one of them. We are thus going to prune the tree, leaving only one of the duplicate
states. This leaves a tree T(X,w) with finite width, not exceeding the number of states of D(X). One
can easily see that T(X,w) contains a live path if and only if T(X,w) does.

As shown in [4], the choice of the branch to keep is very important. A wrong choice may result in
missing the live path. In the method described there, we used a left-to-right ordering of the run tree,
and always kept the rightmost occurrence. That method was related to the determinization algorithm
invented by Safra [5,6]. (The idea of green events is borrowed from there.)

Safra’s algorithm has been recently improved by Piterman [3]. We exploit his idea by using numbers
on the brackets to decide which occurrences to remove. We no longer need to keep information about
the order; at the end, this reduces the number of states of the deterministic automaton.

6 Annotating the run tree

The result of pruning the tree of Fig.3 and inserting the brackets according to our method is shown in
Fig.4. Before presenting the exact algorithm, we describe some points in an informal way. of marking
and pruning the run tree.

As one can see, it is quite inconvenient to insert brackets in the actual tree. We can do it instead
on a copy of each level, as shown on the right. The process can be thus reduced to annotating the tree
with strings of state names and numbered brackets. One can, in fact, compute the annotations without
ever looking at the tree, and we are going to describe exactly how to do it. Before doing this, let us pay
attention to some steps in the process

We notice first that the subtree in brackets numbered 2, with root D; at level 2 had a green event at
level 4. The e-transition from Dy on level 3 added a pair of brackets around Dy at level 4. As the only
state within the 2-brackets got additional brackets, this was a green event. The additional brackets were
removed, and a green event for 2-brackets is indicated by = G 2. We have then an identical situation at
level 6.

At level 5, we had initially two occurrences of Dy. Our method uses the nesting pattern of the node
to decide which one to prune. The nesting pattern is the sequence of numbers on the brackets enclosing
the node, written from outside in. The nesting pattern of the leftmost Dy was thus [1, 3], and that of the
rightmost Do was [1,2]. Our rule is to retain the node with the lexicographically lowest nesting pattern,
so the leftmost Dy was removed. In this situation, the D; on level 4 was left without descendants, and
the brackets numbered 3 disappear on level 5. This is a red event for 3-brackets, indicated by = R 3.

When comparing the nesting patterns of different lengths, we always think of the shorter one as
extended with very high numbers at the end so that, in particular, [1,2] > [1, 2, 3].

The exact procedure for annotating the tree is given in the next section, and its application to levels
3 and 4 above is illustrated in detail in Section 6.2.

level

—_
-~
-]
-~

S
N}

w [\)
=p

-~ -~
o 0~
@ @
N

A

~~

o

[Nt

=

R

—

0~
o ~—
~~

>

o
[Nt
-

)
0~

—

. @ o ey (poP) ()} e
. ey éz}; (20(21]) =
C @ ey ey meaen o

a . . =R2

\]
o~

w
w
St
0~
o

Fig. 4

6.1 Algorithm A
Annotate level 1 with { Dy }.

For [> 1, copy the part of the annotation between, and including, the brackets numbered 1 from level
I — 1 to level [and transform it as follows:

(A1)
(A2)

(A3)

(A4)

(A5)

(A6)

Replace each D; by 0aD; { O(3q)D; } . Omit 9,D; if it is empty, and { Oy a)D; } if Oy a)Di = @.
Assign the lowest unused numbers to the newly introduced brackets.

If a node occurs more than once, remove all its occurrences except the one with lexicographically
lowest nesting pattern. If more nodes have identical lowest pattern, choose any one of them.
Remove all pairs of brackets that do not contain any nodes.

Set r to the lowest number on the removed pair, or to N + 1 if there were none, where N is the
number of states of D(X).

Call a pair of brackets "green” if all states inside it are enclosed in additional nested brackets.
Remove all brackets (but not nodes) inside each green pair.

Set g to the lowest number on the green pair, or to N + 1 if there were none.

For pair numbered m, define rem(m) to be the number of pairs removed in step (A3) that had
number lower than m. Change the number of each pair from m to m — rem(m).

If g < r, append = G g on the right. If r < g and r # N + 1, append = Rr.

6.2 Examples

Algorithm A is illustrated below by applying it to the annotations on levels 3 and 4 of Fig. 3.

input a applied to level 3 input b applied to level 4
start with EDOEDQE‘{ {1D0{3D1‘};{2D4z%
e (A DD (D)) {DelD) (02))
e (42 (DD (D)) (DL} (D)
after (A3) iDOEDliEEDQEE r==6 {1D0£D2£% r=3
after (A4) {1D0£D13{2D4zl g=2 gDo{zDgz% g==6
after (A5) {Do{D1} {Ds} {Do{D>}}
w30 {B(pi} (2] ~G2 {mipay}) —n

6.3 Analysis

Before we prove the exact condition for the existence of a live path, we shall need some auxiliary facts.
One can easily see that (A1)—(A2) produce a correct image of nodes on level [with brackets from level
I — 1 carried down to enclose descendants of the contained nodes, and with additional brackets around
nodes reached by marked edges.
We shall say that a node, or a pair of brackets, resides in a pair B of brackets to mean that B is the
nearest enclosing pair.

Lemma 2. The annotation for each level | > 1 has the following properties:
(L1) Each pair of brackets has at least one node residing in it.
(L2) There are at most N pairs of brackets, where N is the number of nodes of D(X).
(L3) The brackets are numbered with consecutive numbers 1,...m.
(L4) Inner brackets have numbers higher than enclosing brackets.

Proof. The Proposition is obviously true for level 1. Suppose it is true for level [> 1. We show that
(L1)—(L4) remain true for level [4 1.

(L1) Empty pairs of brackets created by (A1) and (A2) are removed by (A3). No nodes reside in a
pair that became green after (Al). But, (A4) removes all its inner brackets so that all contained nodes
reside in that pair.

(L2) is an immediate consequence of (L1) and the fact that (A2) removes all duplicate nodes.

(L3) This is the obvious result of (A5).

(L4) New brackets are added in (A1). Each added pair obtains the lowest unused number. Because of
this and (L3), this number is higher than that on the enclosing brackets. Renumbering in (A5) cannot
change this: suppose brackets numbered m; enclose brackets numbered mg > m;. If (A3) removed k
empty pairs of brackets with numbers lower than my, both m; and mg are reduced by k. If (A3) removed
k pairs with numbers between m; and ms, mo is reduced by k. But, £ must be less than mo —mq — 1,
SO Mo > my remains true. Removing pairs with numbers higher than msy leaves m; and mso unchanged.

O

6.4 Do we have a live path?

Proposition 2. T(X,w) contains a live path if and only if there exists g such that = Gg appears on
infinitely many levels, while = Rr with r < g appears on at most finitely many levels.

Proof. (1) Suppose = G g appears on infinitely many levels. Suppose further that no = Rr with r < g
appears after some level lp. It means that after that level, we have a pair numbered g that is neither
removed nor renumbered, and nodes within that pair form a subtree of T(X, w) rooted at some node D,,.

The = G g appearing on infinitely many levels means that the subtree is infinite. By Konig’s lemma, it
contains an infinite path p from D,.

Consider any level | > [y where the pair g becomes green. Step (A4) removed all brackets nested inside
it. On each subsequent level, step (Al) adds a pair of brackets around each node reached by an edge
marked with e. The next green level is achieved when each node within the g-brackets have been reached
by a path containing at least one marked edge. Thus, the part of p between any two green levels contains
at least one marked edge. As there are infinitely many green levels, p contains infinitely marked edges.
The path from the root of T(X,w) to D,, extended with p is a live path in T (X, w).

(2) Suppose T(X,w) contains a live path p. Each level [of the tree contains a node D,(l) belonging
to p. Each pair of brackets enclosing D,(l) encloses a subtree with some node on p as its root. As
numbers on the brackets change in the process, we shall use this node to identify the brackets. The
nested brackets enclosing D, (I) are thus described by the sequence B(l) = By, Bi, ..., B, of nodes on p
that are roots of the nested subtrees. The nodes are listed top down, so that By is always the root of
T(X,w) and represents the pair numbered 1. The sequence of numbers on these brackets is the nesting
pattern of D,(l).

Suppose that pair By becomes green at infinitely many levels, so = G 1 appears infinitely often. The
pair is never removed, so = R 1 never appears, and the condition of the theorem is satisfied.

Otherwise, By becomes green at only finitely many levels. Let us consider a more general situation
where k > 1 outermost pairs: By, Bi,...,Br_1 no longer turn green after some level [y. At some level
Iy > lg, the first marked edge on p adds a pair By inside By_1. As the result of pruning, the number &
may be reduced (but never to 0), and the pair By replaced by another one. In order not to complicate
the notation, we shall consider a generic situation with k£ + 1 outermost brackets By, B1, ..., Bx_1, By of
which the first £ no longer turn green.

Let us see in detail what happens when Algorithm A is applied to a level [> [;.

(A1) If the next edge of p is marked, (Al) adds a pair of brackets around D,(l), extending B(l) with
one element. It does not affect the nest By, By, ..., Bg.

(A2) Pruning replaces D,(l) by another node D, (I). We have a new live path p’, that goes from the
root of T(X,w) to D;,(1), and then continues with a copy of p starting at D;,(I). The node D}, (1)
will now, in general, be enclosed in a new nest of brackets, represented by a new sequence B’(1)
of root nodes on p’. The paths p and p’ have a common initial portion (at least the starting
node), so B’(l) contains k' < k initial elements of B(I) that no more turn green. We end thus up
with B'(l) = By, ..., By _1,B;, ... where By, By, ..., Bj,_; no more turn green. By the choice of
D; (1), the nesting pattern of B'(l) is not higher than that of B(I), and so is the nesting pattern
of By.

(A3) All elements of B(l) contain a node from p, so they are not deleted by (A3).

(A4) At a green event, (A4) removes a tail of B(l) after the pair that turned green. As By, By, ..., Br_1
do not turn green, it leaves By, B, ..., Bx_1, Bx unchanged.

(A5) The renumbering by (A5) does not change B(l), but reduces some items of P(l), resulting in a
lower nesting pattern.

In each case, we are left with a nest B(l) = By, B1, ..., By, ... of brackets of which the first ¥ no more
turn green. The number k£ may be reduced, but the nesting pattern of By, if it changes, can only be
lowered by (A2) or (A5). As the nesting pattern cannot be indefinitely lowered, it will not be changed
any more after some level l5. Consider any level [> Il and suppose By turns green infinitely often after
this level. As it is not deleted by (A3) or (A4), and no longer replaced by (A2) or renumbered by (A5),
= Gg with the number g of By appears infinitely often. The absence of renumbering by (A5) means
that no pair with number r < g is deleted by (A3) so = Rr with r» < g no longer appears. The condition
of the theorem is thus satisfied.

If B does not turn green infinitely often, it does so for the last time at some level l3, resulting in
B(l3) = By, By, ..., Bi. The first marked edge on p changes this to By, By, ..., B, Bx+1. We have now
a nest of k 4+ 2 brackets of which the first £ + 1 do not turn green any more. The reasoning can now be
repeated. However, the nesting pattern of By is lower than that of By, that was possibly lowered, but
never increased, in the previous turn. According to (L1)—(L4), the nesting pattern cannot be lowered
beyond [1,2, ..., N], after which every marked edge on p produces a green event. O

7 Towards a deterministic automaton

According to Proposition 2, we can decide whether T'(X, w) contains a live path by annotating it according
to Algorithm A.

In fact, we do not need to construct D(X) and T(X, w); we can use Algorithm A to directly compute
the annotations. Moreover, we can construct an automaton that will emit the outputs Gg and Rr
appearing in the annotations while reading the word w.

Define the 7state” to be the part of the annotation between, and including, the brackets numbered 1.
Define the "output” to be the part to the right of =, if any. At each level, the next state and the output
are determined by the state at that level and the next letter of w.

The number of different states is finite: as a consequence of (A2) the state cannot contain more than
N nodes and, according to (L2), it cannot contain more than N bracket pairs, where N is the number of
nodes of D(X).

The number of states being finite, we can use (A1)-(A6) to compute once for all the next state and
output for each state and input letter.

The exact construction of the automaton for an expression X is given below.

7.1 The construction

Let X = J!", P;Q¥ be a given w-regular expression over alphabet . Define X’ = |J!'_, P;(Q;)”, where

f is a new letter not in ¥. Compute all recognizably distinct expressions for derivatives of X’ with respect

to words not ending with §. Using the property ¢ defined in Section 2, identify and discard those denoting

. Denote the set of the remaining expressions by . Denote the elements of D by Dy, ..., D,. Find all

relations D; = 0,D; and D; = 944 D; for D;, D; € D, a € 3.

Define the automaton A(X) as follows.

(1) The states of the automaton are sequences consisting of symbols Dy, ..., D,, and numbered brackets.
To obtain all states, start with the initial state defined by (2), and apply (3) to construct states
reached after 1, 2, 3, etc., letters until no new states are obtained.

Note that the order of D;’s does not matter when comparing states. Two states are identical if they
contain the same D;’s with the same nesting patterns.

(2) The initial state is {9.X'}.

1
(3) Transitions: for a state s and an input letter a € X, apply (A1)—(A6) to s. The part of the result
between, and including, the brackets numbered 1 is the next state. The output is to the right of =
(if any).

(4) Acceptance condition: a word w € 3¢ is accepted by A(X) if and only if there exists g such that the
automaton applied to w emits Gg infinitely many times, and emits any Rr with » < g only finitely
many times.

Proposition 3. The automaton A(X) recognizes the language X .

Proof. One can easily see that the states and the outputs of A(X) when it reads a word w are exactly
the annotations produced by Algorithm A for T(X, w). According to Proposition 2, A(X) accepts w if
and only if T'(X,w) contains a live path, and T(X, w) contains a live path if an only if D(X) accepts w.
According to Proposition 1, D(X) accepts w if and only if w € X.

O

10

7.2 Example

The states and transitions for X = (aUb)*(a* U (ab)“) are shown below.

state next state for a next state for b
A={Do} B={Do{D1}} A={Dy}
1 1 1 2 2 1 1 1
B={Do{D:1}} C={Do{D:1}{Ds}} =G2 D= {Do{D:2}}
1 2 2 1 1 3 3 2 2 1 1 2 2 1

C={Do{D:1}{D3}} C={Do{D:1}{D3}} = G2 D= {Do{D2}} = R2

3 3 2 3 3 2 21 21

D:{DQ{DQ}} E:{Do{Dl}{D4}}$G2 :{D()} = R2

1 3 3 2 21

A
E={Do{D1}{Ds}} C={Do{D1}{Ds}} =R2 DZEDo{Dz}}iRi”

3 3 2 3 2 21

The resulting automaton A(X) is shown in Fig.4. It accepts the input word if it emits G2 infinitely

often and R2 only finitely often.
b a/G2

2 a a/c;Qﬂ
~() (©)

4 R
/’&) b ‘OQ%v a/R2
O—=0
b/R3
Fig. 4

8 Comments

By eliminating the ordering of nodes, the described construction gives fewer states than one in [4], but
their number is still exponential. The construction and proofs have been simplified by introducing the
derivative automaton and the run tree.

The annotations used as states of A(X) are essentially isomorphic with the Piterman’s trees obtained
for the derivative automaton D(X). The author believes that annotating the run tree with bracket
structures instead of constructing Piterman’s trees makes the process simpler to define and visualize: the
bracket structures are easier to represent in print than trees, In addition, they can be computed directly
without constructing the derivative automaton.

The acceptance condition in terms of ”green” and ”red” outputs can be converted to parity condition
similar to that in [3]. Replace the output Gg by 2g and Rr by 2r — 1; a run is then accepting if and only
if the lowest number emitted infinitely often is even.

Estimating the number of states in the same way as in [3] gives n™(n — 1)! as the upper bound. It
is lower than that in [3] by the factor of 2n due to acceptance condition in terms of transitions rather
than states. According to the above result, the maximum possible number of states of A(X) for D(X)
with 5 states is 5°(5 — 1)! = 75000. Is the fact that we obtained A(X) with only 5 states just a lucky
coincidence, or is there something about the derivative automaton that can be used to lower the upper
bound?

To close, we repeat the final remark from [4], pointing out two properties of Brzozowski’s construction
that our construction fails to achieve.

First, Brzozowski can produce a unique, minimal, automaton for the given language, not depending
on the expression used to denote that language. This happens when all derivatives used in the construc-
tion denote distinct languages. Our automaton depends strongly on the expression, and need not have
the minimal number of states. (In fact, a unique minimal automaton does not in general exist for an
w-regular language.)

11

Second, Brzozowski’s construction can be applied to extended regular expressions, that allow intersec-
tion and complementation in addition to union, product, and star. (It was, in fact, presented so in [1].)
Unfortunately, our Proposition 1 breaks down if X does not have the stated form.

References

[1] BrRzozOwsKI, J. A. Derivatives of regular expressions. Journal of the ACM 11, 4 (Oct. 1964),
481-494.

[2] OWENS, S., REPPY, J., AND TURON, A. Regular-expression derivatives re-examined. Journal of
Functional Programming 19, 2 (2009), 173-190.

[3] PITERMAN, N. From nondeterministic Biichi and Streett automata to deterministic parity automata.
Logical Methods in Computer Science 8, 3 (2007).

[4] REDZIEJOWSKI, R. R. Construction of a deterministic w-automaton using derivatives. Informatique
Théorique et Applications 33 (1999), 133-158.

[6] SAFRA, S. On the complexity of w-automata. In Proc. 29th Annual Symposium on Foundations of
Computer Science (1988), IEEE, pp. 319-327.

[6] SAFRA, S. Complexity of automata on infinite objects. Master’s thesis, Weizmann Institute of Science,
Rehovot, Israel, Mar. 1989.

12

