
From EBNF to PEG

Roman R. Redziejowski

Concurrency, Specification and Programming
Berlin 2012

Roman R. Redziejowski From EBNF to PEG

EBNF: Extended Backus-Naur Form

A way to define grammar.

Roman R. Redziejowski From EBNF to PEG

EBNF: Extended Backus-Naur Form

A way to define grammar.

Literal = Decimal | Binary

Decimal = [0-9]+ "." [0-9]∗

Binary = [01]+ "B"

Roman R. Redziejowski From EBNF to PEG

Recursive-descent parsing

Parsing procedure for each equation and each terminal.

Literal = Decimal | Binary

Decimal = [0-9]+ "." [0-9]∗

Binary = [01]+ "B"

Literal calls Decimal or Binary.
Decimal calls repeatedly [0-9], then ".", then repeatedly [0-9].
Binary calls repeatedly [01], then "B".

Roman R. Redziejowski From EBNF to PEG

Recursive-descent parsing

Parsing procedure for each equation and each terminal.

Literal = Decimal | Binary

Decimal = [0-9]+ "." [0-9]∗

Binary = [01]+ "B"

Literal calls Decimal or Binary.
Decimal calls repeatedly [0-9], then ".", then repeatedly [0-9].
Binary calls repeatedly [01], then "B".

Problem: Decimal and Binary may start
with any number of 0’s and 1’s.
Literal cannot choose which procedure to call
by looking at any fixed distance ahead.

Roman R. Redziejowski From EBNF to PEG

Solution: Backtracking

Literal = Decimal | Binary

Decimal = [0-9]+ "." [0-9]∗

Binary = [01]+ "B"

101B
^

Roman R. Redziejowski From EBNF to PEG

Solution: Backtracking

Literal = Decimal | Binary

Decimal = [0-9]+ "." [0-9]∗

Binary = [01]+ "B"

101B
^

Literal

Roman R. Redziejowski From EBNF to PEG

Solution: Backtracking

Literal = Decimal | Binary

Decimal = [0-9]+ "." [0-9]∗

Binary = [01]+ "B"

101B
^

Literal→Decimal

Roman R. Redziejowski From EBNF to PEG

Solution: Backtracking

Literal = Decimal | Binary

Decimal = [0-9]+ "." [0-9]∗

Binary = [01]+ "B"

101B
^

Literal→Decimal→[0-9]

Roman R. Redziejowski From EBNF to PEG

Solution: Backtracking

Literal = Decimal | Binary

Decimal = [0-9]+ "." [0-9]∗

Binary = [01]+ "B"

101B
^

Literal→Decimal→[0-9] : advance 3 times

Roman R. Redziejowski From EBNF to PEG

Solution: Backtracking

Literal = Decimal | Binary

Decimal = [0-9]+ "." [0-9]∗

Binary = [01]+ "B"

101B
^

Literal→Decimal→"."

Roman R. Redziejowski From EBNF to PEG

Solution: Backtracking

Literal = Decimal | Binary

Decimal = [0-9]+ "." [0-9]∗

Binary = [01]+ "B"

101B
^

Literal→Decimal→"." : fail, backtrack

Roman R. Redziejowski From EBNF to PEG

Solution: Backtracking

Literal = Decimal | Binary

Decimal = [0-9]+ "." [0-9]∗

Binary = [01]+ "B"

101B
^

Literal

Roman R. Redziejowski From EBNF to PEG

Solution: Backtracking

Literal = Decimal | Binary

Decimal = [0-9]+ "." [0-9]∗

Binary = [01]+ "B"

101B
^

Literal→Binary

Roman R. Redziejowski From EBNF to PEG

Solution: Backtracking

Literal = Decimal | Binary

Decimal = [0-9]+ "." [0-9]∗

Binary = [01]+ "B"

101B
^

Literal→Binary→[01]

Roman R. Redziejowski From EBNF to PEG

Solution: Backtracking

Literal = Decimal | Binary

Decimal = [0-9]+ "." [0-9]∗

Binary = [01]+ "B"

101B
^

Literal→Binary→[01] : advance 3 times

Roman R. Redziejowski From EBNF to PEG

Solution: Backtracking

Literal = Decimal | Binary

Decimal = [0-9]+ "." [0-9]∗

Binary = [01]+ "B"

101B
^

Literal→Binary→"B"

Roman R. Redziejowski From EBNF to PEG

Solution: Backtracking

Literal = Decimal | Binary

Decimal = [0-9]+ "." [0-9]∗

Binary = [01]+ "B"

101B
^

Literal→Binary→"B" : advance, return

Roman R. Redziejowski From EBNF to PEG

Solution: Backtracking

Literal = Decimal | Binary

Decimal = [0-9]+ "." [0-9]∗

Binary = [01]+ "B"

Roman R. Redziejowski From EBNF to PEG

Limited backtracking

Backtracking solves the problem,
but may take exponential time.

Roman R. Redziejowski From EBNF to PEG

Limited backtracking

Backtracking solves the problem,
but may take exponential time.

Solution: limited backtracking.
Never go back after one alternative succeeded.

Roman R. Redziejowski From EBNF to PEG

Limited backtracking

Backtracking solves the problem,
but may take exponential time.

Solution: limited backtracking.
Never go back after one alternative succeeded.

1961 Brooker & Morris - Altas Compiler Compiler

1965 McClure - TransMoGrifier (TMG)

1972 Aho & Ullman - Top-Down Parsing Language (TDPL)

...

2004 Ford - Parsing Expression Grammar (PEG)

Roman R. Redziejowski From EBNF to PEG

Limited backtracking

Backtracking solves the problem,
but may take exponential time.

Solution: limited backtracking.
Never go back after one alternative succeeded.

1961 Brooker & Morris - Altas Compiler Compiler

1965 McClure - TransMoGrifier (TMG)

1972 Aho & Ullman - Top-Down Parsing Language (TDPL)

...

2004 Ford - Parsing Expression Grammar (PEG)

It can work in linear time.

Roman R. Redziejowski From EBNF to PEG

PEG - Parsing Expression Grammar

Looks exactly like EBNF:

Literal = Decimal / Binary

Decimal = [0-9]+ "." [0-9]∗

Binary = [01]+ "B"

Roman R. Redziejowski From EBNF to PEG

PEG - Parsing Expression Grammar

Looks exactly like EBNF:

Literal = Decimal / Binary

Decimal = [0-9]+ "." [0-9]∗

Binary = [01]+ "B"

Specification of a recursive-descent parser
with limited backtracking, where "/" means
an ordered no-return choice.

Roman R. Redziejowski From EBNF to PEG

PEG is not EBNF

EBNF: PEG:

A = ("a" / "aa") "b" {ab, aab} {ab}

A = ("aa" / "a") "ab" {aaab, aab} {aaab}

A = ("a" / "b"?) "a" {aa, ba, a} {aa, ba}

Roman R. Redziejowski From EBNF to PEG

PEG is not EBNF

EBNF: PEG:

A = ("a" / "aa") "b" {ab, aab} {ab}

A = ("aa" / "a") "ab" {aaab, aab} {aaab}

A = ("a" / "b"?) "a" {aa, ba, a} {aa, ba}

Backtracking may examine input far ahead
so result may depend on context in front.

Roman R. Redziejowski From EBNF to PEG

PEG is not EBNF

EBNF: PEG:

A = ("a" / "aa") "b" {ab, aab} {ab}

A = ("aa" / "a") "ab" {aaab, aab} {aaab}

A = ("a" / "b"?) "a" {aa, ba, a} {aa, ba}

Backtracking may examine input far ahead
so result may depend on context in front.

A = "a" A "a" / "aa" EBNF: a2n PEG: a2n

Roman R. Redziejowski From EBNF to PEG

Sometimes PEG is EBNF

In this case PEG = EBNF:

Literal = Decimal / Binary

Decimal = [0-9]+ "." [0-9]∗

Binary = [01]+ "B"

Roman R. Redziejowski From EBNF to PEG

Sometimes PEG is EBNF

In this case PEG = EBNF:

Literal = Decimal / Binary

Decimal = [0-9]+ "." [0-9]∗

Binary = [01]+ "B"

When does it happen?

Roman R. Redziejowski From EBNF to PEG

When PEG = EBNF?

Sérgio Queiroz de Medeiros

Correspondência entre PEGs e Classes
de Gramáticas Livres de Contexto.

Ph.D. Thesis

Pontifícia Universidade Católica
do Rio deJaneiro (2010).

Roman R. Redziejowski From EBNF to PEG

When PEG = EBNF?

Sérgio Queiroz de Medeiros

Correspondência entre PEGs e Classes
de Gramáticas Livres de Contexto.

Ph.D. Thesis

Pontifícia Universidade Católica
do Rio deJaneiro (2010).

If EBNF has LL(1) property then PEG = EBNF

Roman R. Redziejowski From EBNF to PEG

When PEG = EBNF?

But this is not LL(1):

Literal = Decimal / Binary

Decimal = [0-9]+ "." [0-9]∗

Binary = [01]+ "B"

Roman R. Redziejowski From EBNF to PEG

When PEG = EBNF?

But this is not LL(1):

Literal = Decimal / Binary

Decimal = [0-9]+ "." [0-9]∗

Binary = [01]+ "B"

Which means PEG = EBNF for a wider class.

Roman R. Redziejowski From EBNF to PEG

When PEG = EBNF?

But this is not LL(1):

Literal = Decimal / Binary

Decimal = [0-9]+ "." [0-9]∗

Binary = [01]+ "B"

Which means PEG = EBNF for a wider class.
Let us find more about it.

Roman R. Redziejowski From EBNF to PEG

Simple grammar

Alphabet Σ (the "terminals").

Set N of names (the "nonterminals").

For each A ∈ N one rule of the form:

A = e1 e2 (Sequence) or

A = e1 | e2 (Choice)

where e1, e2 ∈ N ∪ Σ ∪ {ε}.

Start symbol S ∈ A.

"Syntax expressions": E = N ∪ Σ ∪ {ε}.

Roman R. Redziejowski From EBNF to PEG

Simple grammar

Alphabet Σ (the "terminals").

Set N of names (the "nonterminals").

For each A ∈ N one rule of the form:

A = e1 e2 (Sequence) or

A = e1 | e2 (Choice)

where e1, e2 ∈ N ∪ Σ ∪ {ε}.

Start symbol S ∈ A.

"Syntax expressions": E = N ∪ Σ ∪ {ε}.

Will consider two interpretations: EBNF and PEG.

Roman R. Redziejowski From EBNF to PEG

EBNF interpretation

L(e) – language of expression e ∈ E.

L(ε) = {ε}

L(a) = {a} for a ∈ Σ

L(A) = L(e1)L(e2) for A = e1 e2

L(A) = L(e1) ∪ L(e2) for A = e1 | e2

Language defined by the grammar: L(S).

Roman R. Redziejowski From EBNF to PEG

"Natural semantics" (after Medeiros)

Relation BNF
 ⊆ E× Σ∗ × Σ∗, written [e] x BNF

 y .

[e] xy BNF
 y means "xy has prefix x ∈ L(e)".

Or: parsing procedure for e, applied to xy consumes x".

w ∈ L(S) ⇔ [S] w$ BNF
 $

where $ is "end of text" marker.

Roman R. Redziejowski From EBNF to PEG

"Natural semantics" (after Medeiros)

[e] x BNF
 y holds if and only if

it can be proved using these inference rules:

[ε] x BNF
 x [a] ax BNF

 x

A = e1e2 [e1] xyz BNF
 yz [e2] yz BNF

 z

[A] xyz BNF
 z

A = e1|e2 [e1] xy BNF
 y

[A] xy BNF
 y

A = e1|e2 [e2] xy BNF
 y

[A] xy BNF
 y

Roman R. Redziejowski From EBNF to PEG

Example of proof

Grammar: S = aX, X = S|b Proof of aab ∈ L(S)

[b] b$ BNF
 $

[a] ab$ BNF
 b$

X = S|b [b] b$ BNF
 $

[X] b$ BNF
 $

S = aX [a] ab$ BNF
 b$ [X] b$ BNF

 $

[S] ab$ BNF
 $

[a] aab$ BNF
 ab$

X = S|b [S] ab$ BNF
 $

[X] ab$ BNF
 $

S = aX [a] aab$ BNF
 ab$ [X] ab$ BNF

 $

[S] aab$ BNF
 $

Roman R. Redziejowski From EBNF to PEG

PEG interpretation

Elements of E are parsing procedures
that consume input or return "failure".

ε returns success without consuming input.

a consumes a if input starts with a.
Otherwise returns failure.

A = e1 e2 calls e1 then e2.
If any of them failed, backtracks and returns failure.

A = e1 | e2 calls e1.
If e1 succeeded, returns success.
If e1 failed, calls e2 and returns its result.

Roman R. Redziejowski From EBNF to PEG

"Natural semantics" (after Medeiros)

Relation PEG
 ⊆ E× Σ∗ × (Σ∗ ∪ fail), written [e] x PEG

 y .

[e] xy PEG
 y means "e consumes prefix x of xy".

[e] x PEG
 fail means "e applied to x returns failure".

w accepted by the grammar iff [S] w$ PEG
 $.

Roman R. Redziejowski From EBNF to PEG

"Natural semantics" (after Medeiros)

[e] x PEG
 Y holds if and only if

it can be proved using these inference rules:

[ε] x PEG
 x [a] ax PEG

 x

b 6= a

[b] ax PEG
 fail [a] ε PEG

 fail

A = e1e2 [e1] xyz PEG
 yz [e2] yz PEG

 Z

[A] xyz PEG
 Z

A = e1e2 [e1] x PEG
 fail

[A] x PEG
 fail

A = e1|e2 [e1] xy PEG
 y

[A] xy PEG
 y

A = e1|e2 [e1] x PEG
 fail [e2] xy PEG

 Y

[A] xy PEG
 Y

where Y is y or fail and Z is z or fail .

Roman R. Redziejowski From EBNF to PEG

When PEG = EBNF?

By induction on the height of proof trees for
[S] w$ PEG

 $ and [S] w$ BNF
 $:

[S] w$ PEG
 $ ⇒ [S] w$ BNF

 $. (Medeiros)

Roman R. Redziejowski From EBNF to PEG

When PEG = EBNF?

By induction on the height of proof trees for
[S] w$ PEG

 $ and [S] w$ BNF
 $:

[S] w$ PEG
 $ ⇒ [S] w$ BNF

 $. (Medeiros)

[S] w$ BNF
 $ ⇒ [S] w$ PEG

 $

if for every Choice A = e1|e2 holds

L(e1) ∩ Pref(L(e2)Tail(A)) = ∅.

Roman R. Redziejowski From EBNF to PEG

When PEG = EBNF?

By induction on the height of proof trees for
[S] w$ PEG

 $ and [S] w$ BNF
 $:

[S] w$ PEG
 $ ⇒ [S] w$ BNF

 $. (Medeiros)

[S] w$ BNF
 $ ⇒ [S] w$ PEG

 $

if for every Choice A = e1|e2 holds

L(e1) ∩ Pref(L(e2)Tail(A)) = ∅.

(Tail(A) is any possible continuation after A:
y ∈ Tail(A) iff proof tree of [S] w$ BNF

 $ for some w

contains partial result [A] xy$ BNF
 y$.)

Roman R. Redziejowski From EBNF to PEG

When PEG = EBNF?

Let us say that Choice A = e1|e2 is "safe" to mean
L(e1) ∩ Pref(L(e2)Tail(A)) = ∅.

Roman R. Redziejowski From EBNF to PEG

When PEG = EBNF?

Let us say that Choice A = e1|e2 is "safe" to mean
L(e1) ∩ Pref(L(e2)Tail(A)) = ∅.

The two interpretations are equivalent
if every Choice in the grammar is safe.

Roman R. Redziejowski From EBNF to PEG

Notes

L(e1) ∩ Pref(L(e2)Tail(A)) = ∅

Roman R. Redziejowski From EBNF to PEG

Notes

L(e1) ∩ Pref(L(e2)Tail(A)) = ∅

Requires ε /∈ L(e1).

Roman R. Redziejowski From EBNF to PEG

Notes

L(e1) ∩ Pref(L(e2)Tail(A)) = ∅

Requires ε /∈ L(e1).

Depends on context.

Roman R. Redziejowski From EBNF to PEG

Notes

L(e1) ∩ Pref(L(e2)Tail(A)) = ∅

Requires ε /∈ L(e1).

Depends on context.

Difficult to check: L(e1), L(e2), and Tail(A)
can be any context-free languages.

Intersection of context-free languages is in general
undecidable.

Roman R. Redziejowski From EBNF to PEG

Notes

L(e1) ∩ Pref(L(e2)Tail(A)) = ∅

Requires ε /∈ L(e1).

Depends on context.

Difficult to check: L(e1), L(e2), and Tail(A)
can be any context-free languages.

Intersection of context-free languages is in general
undecidable.

Can be "approximated" by stronger conditions.

Roman R. Redziejowski From EBNF to PEG

Approximation by first letters

Consider A = e1|e2.

FIRST(e1), FIRST(e2):
sets of possible first letters
of words in L(e1) respectively L(e2).

Roman R. Redziejowski From EBNF to PEG

Approximation by first letters

Consider A = e1|e2.

FIRST(e1), FIRST(e2):
sets of possible first letters
of words in L(e1) respectively L(e2).

If L(e1),L(e2), do not contain ε,
FIRST(e1) ∩ FIRST(e2) = ∅

implies L(e1) ∩ Pref(L(e2)Tail(A)) = ∅.

Roman R. Redziejowski From EBNF to PEG

Approximation by first letters

Consider A = e1|e2.

FIRST(e1), FIRST(e2):
sets of possible first letters
of words in L(e1) respectively L(e2).

If L(e1),L(e2), do not contain ε,
FIRST(e1) ∩ FIRST(e2) = ∅

implies L(e1) ∩ Pref(L(e2)Tail(A)) = ∅.

This is LL(1) for grammar without ε.
Each choice in such grammar is safe.
The two interpretations are equivalent.

Roman R. Redziejowski From EBNF to PEG

Approximation by first expressions

To go beyond LL(1), we shall look at
first expressions rather than first letters.

Roman R. Redziejowski From EBNF to PEG

Computing FIRST

X

Z V

a b T

c

Y

W

d U

c

S = X |Y

X = Z |V

Y = W X

Z = a | b

V = b |T

W = d |U

T = c V

U = c W

Roman R. Redziejowski From EBNF to PEG

Computing FIRST

X

Z V

a b T

c

Y

W

d U

c

S = X |Y

X = Z |V

Y = W X

Z = a | b

V = b |T

W = d |U

T = c V

U = c W

FIRST(X) = {a, b, c}

Roman R. Redziejowski From EBNF to PEG

Computing FIRST

X

Z V

a b T

c

Y

W

d U

c

S = X |Y

X = Z |V

Y = W X

Z = a | b

V = b |T

W = d |U

T = c V

U = c W

FIRST(X) = {a, b, c}
FIRST(Y) = {c, d}

Roman R. Redziejowski From EBNF to PEG

Computing FIRST

X

Z V

a b T

c

Y

W

d U

c

S = X |Y

X = Z |V

Y = W X

Z = a | b

V = b |T

W = d |U

T = c V

U = c W

FIRST(X) = {a, b, c}
FIRST(Y) = {c, d}
{a, b, c} ∩ {c, d} 6= ∅: S = X |Y is not LL(1).

Roman R. Redziejowski From EBNF to PEG

Truncated computation of FIRST

X

Z V

a b T

Y

W

d U

S = X |Y

X = Z |V

Y = W X

Z = a | b

V = b |T

W = d |U

T = c V

U = c W

Roman R. Redziejowski From EBNF to PEG

Truncated computation of FIRST

X

Z V

a b T

Y

W

d U

S = X |Y

X = Z |V

Y = W X

Z = a | b

V = b |T

W = d |U

T = c V

U = c W

Each word in L(X) has a prefix in {a, b} ∪ L(T) = a ∪ c∗b.

Roman R. Redziejowski From EBNF to PEG

Truncated computation of FIRST

X

Z V

a b T

Y

W

d U

S = X |Y

X = Z |V

Y = W X

Z = a | b

V = b |T

W = d |U

T = c V

U = c W

Each word in L(X) has a prefix in {a, b} ∪ L(T) = a ∪ c∗b.
Each word in L(Y) has a prefix in {d} ∪ L(U) = d∗b.

Roman R. Redziejowski From EBNF to PEG

Approximation by first expressions

Each word in L(X) has a prefix in a ∪ c∗b.
Each word in L(Y) has a prefix in d∗b.

L(X) = (a ∪ c∗b)(. . .)
L(Y) = (c∗d)(. . .)

Roman R. Redziejowski From EBNF to PEG

Approximation by first expressions

Each word in L(X) has a prefix in a ∪ c∗b.
Each word in L(Y) has a prefix in d∗b.

L(X) = (a ∪ c∗b)(. . .)
L(Y) = (c∗d)(. . .)

L(X) ∩ Pref(L(Y)Tail(S))
= (a ∪ c∗b)(. . .) ∩ Pref((c∗d)(. . .)(. . .))

Roman R. Redziejowski From EBNF to PEG

Approximation by first expressions

Each word in L(X) has a prefix in a ∪ c∗b.
Each word in L(Y) has a prefix in d∗b.

L(X) = (a ∪ c∗b)(. . .)
L(Y) = (c∗d)(. . .)

L(X) ∩ Pref(L(Y)Tail(S))
= (a ∪ c∗b)(. . .) ∩ Pref((c∗d)(. . .)(. . .))

No word in a ∪ c∗b is a prefix of word in c∗d and vice-versa.

Roman R. Redziejowski From EBNF to PEG

Approximation by first expressions

Each word in L(X) has a prefix in a ∪ c∗b.
Each word in L(Y) has a prefix in d∗b.

L(X) = (a ∪ c∗b)(. . .)
L(Y) = (c∗d)(. . .)

L(X) ∩ Pref(L(Y)Tail(S))
= (a ∪ c∗b)(. . .) ∩ Pref((c∗d)(. . .)(. . .))

No word in a ∪ c∗b is a prefix of word in c∗d and vice-versa.

The intersection is empty: S = X |Y is safe.

Roman R. Redziejowski From EBNF to PEG

Some terminology

X starts with a, b, or T :
"X has a, b, and T as possible first expressions".

{a, b,T} v X

Roman R. Redziejowski From EBNF to PEG

Some terminology

X starts with a, b, or T :
"X has a, b, and T as possible first expressions".

{a, b,T} v X

No word in a, b, or T is a prefix of a word in d or U
and vice-versa:
"{a, b,T} and {d ,U} are exclusive".

{a, b,T} � {d ,U}

Roman R. Redziejowski From EBNF to PEG

One can easily see that...

If ε /∈ e1 and ε /∈ e2

and there exist FIRST1 v e1, FIRST2 v e2

such that FIRST1 � FIRST2

then A = e1|e2 is safe.

Roman R. Redziejowski From EBNF to PEG

When PEG = EBNF?

The two interpretations of an ε-free grammar
are equivalent if for every Choice A = e1|e2,
e1 and e2 have exclusive sets of first expressions.

Roman R. Redziejowski From EBNF to PEG

Final remarks

(Good news) Grammar with ε is easy to handle. This
involves first expressions of Tail(A), that are obtained using
the classical computation of FOLLOW.

Roman R. Redziejowski From EBNF to PEG

Final remarks

(Good news) Grammar with ε is easy to handle. This
involves first expressions of Tail(A), that are obtained using
the classical computation of FOLLOW.

(Good news) The results for simple grammar are easily
extended to full EBNF / PEG.

Roman R. Redziejowski From EBNF to PEG

Final remarks

(Good news) Grammar with ε is easy to handle. This
involves first expressions of Tail(A), that are obtained using
the classical computation of FOLLOW.

(Good news) The results for simple grammar are easily
extended to full EBNF / PEG.

(Good news) The possible sets of first expressions are
easily obtained in a mechanical way.

Roman R. Redziejowski From EBNF to PEG

Final remarks

(Good news) Grammar with ε is easy to handle. This
involves first expressions of Tail(A), that are obtained using
the classical computation of FOLLOW.

(Good news) The results for simple grammar are easily
extended to full EBNF / PEG.

(Good news) The possible sets of first expressions are
easily obtained in a mechanical way.

(Bad news) Checking that they are exclusive is not easy: it
is undecidable in general case (but we may hope first
expressions are simple enough to be decidable.)

Roman R. Redziejowski From EBNF to PEG

Final final remark

S = (aa|a)b (that is: S = Xb, X = aa|a.)

Roman R. Redziejowski From EBNF to PEG

Final final remark

S = (aa|a)b (that is: S = Xb, X = aa|a.)

L(e1) ∩ Pref(L(e2)Tail(X)) = aa ∩ Pref(ab) = ∅.

Roman R. Redziejowski From EBNF to PEG

Final final remark

S = (aa|a)b (that is: S = Xb, X = aa|a.)

L(e1) ∩ Pref(L(e2)Tail(X)) = aa ∩ Pref(ab) = ∅.

X is safe. Both interpretations accept {aab,ab}.

Roman R. Redziejowski From EBNF to PEG

Final final remark

S = (aa|a)b (that is: S = Xb, X = aa|a.)

L(e1) ∩ Pref(L(e2)Tail(X)) = aa ∩ Pref(ab) = ∅.

X is safe. Both interpretations accept {aab,ab}.

Sets of first expressions in X: {aa} and {a}. Not exclusive!

Roman R. Redziejowski From EBNF to PEG

Final final remark

S = (aa|a)b (that is: S = Xb, X = aa|a.)

L(e1) ∩ Pref(L(e2)Tail(X)) = aa ∩ Pref(ab) = ∅.

X is safe. Both interpretations accept {aab,ab}.

Sets of first expressions in X: {aa} and {a}. Not exclusive!

There is more to squeeze out of L(e1) ∩ Pref(L(e2)Tail(A)).

Roman R. Redziejowski From EBNF to PEG

That’s all

Thanks for your attention!

Roman R. Redziejowski From EBNF to PEG

