From EBNF to PEG

Roman R. Redziejowski

Concurrency, Specification and Programming
Berlin 2012

EBNF: Extended Backus-Naur Form

A way to define grammar.

EBNF: Extended Backus-Naur Form

A way to define grammar.

```
Literal = Decimal | Binary

Decimal = [0-9]^+ "." [0-9]^*

Binary = [01]^+ "B"
```

Recursive-descent parsing

Parsing procedure for each equation and each terminal.

```
Literal = Decimal | Binary

Decimal = [0-9]^+ "." [0-9]^*

Binary = [01]^+ "B"
```

Literal calls Decimal or Binary.

Decimal calls repeatedly [0-9], then ".", then repeatedly [0-9].

Binary calls repeatedly [01], then "B".

Recursive-descent parsing

Parsing procedure for each equation and each terminal.

```
Literal = Decimal | Binary

Decimal = [0-9]^+ "." [0-9]^*

Binary = [01]^+ "B"
```

Literal calls Decimal or Binary.

Decimal calls repeatedly [0-9], then ".", then repeatedly [0-9].

Binary calls repeatedly [01], then "B".

Problem: *Decimal* and *Binary* may start with any number of 0's and 1's. *Literal* cannot choose which procedure to call by looking at any fixed distance ahead.


```
Literal = Decimal | Binary

Decimal = [0-9]<sup>+</sup> "." [0-9]*

Binary = [01]<sup>+</sup> "B"

101B
```

```
Literal = Decimal | Binary

Decimal = [0-9]<sup>+</sup> "." [0-9]*

Binary = [01]<sup>+</sup> "B"

101B
```

Literal

```
Literal = Decimal | Binary

Decimal = [0-9]<sup>+</sup> "." [0-9]*

Binary = [01]<sup>+</sup> "B"

101B
```

Literal → Decimal

```
Literal = Decimal | Binary

Decimal = [0-9]<sup>+</sup> "." [0-9]*

Binary = [01]<sup>+</sup> "B"
```

Literal→*Decimal*→[0-9]

```
Literal = Decimal | Binary

Decimal = [0-9]<sup>+</sup> "." [0-9]*

Binary = [01]<sup>+</sup> "B"

101B
```

Literal→*Decimal*→[0-9] : advance 3 times

Literal→Decimal→"."

```
Literal = Decimal | Binary

Decimal = [0-9]<sup>+</sup> "." [0-9]*

Binary = [01]<sup>+</sup> "B"

101B

^
```

```
Literal = Decimal | Binary

Decimal = [0-9]<sup>+</sup> "." [0-9]*

Binary = [01]<sup>+</sup> "B"
```

Literal→*Decimal*→"." : fail, backtrack

```
Literal = Decimal | Binary

Decimal = [0-9]<sup>+</sup> "." [0-9]*

Binary = [01]<sup>+</sup> "B"

101B
```

Literal

```
Literal = Decimal | Binary

Decimal = [0-9]<sup>+</sup> "." [0-9]*

Binary = [01]<sup>+</sup> "B"
```

Literal→Binary

```
Literal = Decimal | Binary

Decimal = [0-9]<sup>+</sup> "." [0-9]*

Binary = [01]<sup>+</sup> "B"

101B

^
```

Literal→*Binary*→[01]

```
Literal = Decimal | Binary

Decimal = [0-9]<sup>+</sup> "." [0-9]*

Binary = [01]<sup>+</sup> "B"

101B
```

Literal→*Binary*→[01] : advance 3 times

```
Literal = Decimal | Binary

Decimal = [0-9]+ "." [0-9]*

Binary = [01]+ "B"

101B

^
```

Literal→*Binary*→"B"

```
Literal = Decimal | Binary

Decimal = [0-9]<sup>+</sup> "." [0-9]*

Binary = [01]<sup>+</sup> "B"

101B
```

Literal→*Binary*→"B" : advance, return

```
Literal = Decimal | Binary

Decimal = [0-9]^+ "." [0-9]^*

Binary = [01]^+ "B"
```

Backtracking solves the problem, but may take exponential time.

Backtracking solves the problem, but may take exponential time.

Solution: limited backtracking. Never go back after one alternative succeeded.

Backtracking solves the problem, but may take exponential time.

Solution: limited backtracking. Never go back after one alternative succeeded.

- 1961 Brooker & Morris Altas Compiler Compiler
- 1965 McClure TransMoGrifier (TMG)
- 1972 Aho & Ullman Top-Down Parsing Language (TDPL)
- ...
- 2004 Ford Parsing Expression Grammar (PEG)

Backtracking solves the problem, but may take exponential time.

Solution: limited backtracking. Never go back after one alternative succeeded.

- 1961 Brooker & Morris Altas Compiler Compiler
- 1965 McClure TransMoGrifier (TMG)
- 1972 Aho & Ullman Top-Down Parsing Language (TDPL)
- ...
- 2004 Ford Parsing Expression Grammar (PEG)

It can work in linear time.

PEG - Parsing Expression Grammar

Looks exactly like EBNF:

```
Literal = Decimal / Binary

Decimal = [0-9]^+ "." [0-9]^*

Binary = [01]^+ "B"
```

PEG - Parsing Expression Grammar

Looks exactly like EBNF:

```
Literal = Decimal / Binary

Decimal = [0-9]<sup>+</sup> "." [0-9]*

Binary = [01]<sup>+</sup> "B"
```

Specification of a recursive-descent parser with limited backtracking, where "/" means an **ordered no-return choice**.

PEG is not EBNF

```
EBNF: PEG:

A = ("a" / "aa") "b" {ab, aab} {ab}

A = ("aa" / "a") "ab" {aaab, aab} {aaab}

A = ("a" / "b"?) "a" {aa, ba, a} {aa, ba}
```

PEG is not EBNF

```
EBNF: PEG:

A = ("a" / "aa") "b" {ab, aab} {ab}

A = ("aa" / "a") "ab" {aaab, aab} {aaab}

A = ("a" / "b"?) "a" {aa, ba, a} {aa, ba}
```

Backtracking may examine input far ahead so result may depend on context in front.

PEG is not EBNF

```
EBNF: PEG:

A = ("a" / "aa") "b" {ab, aab} {ab}

A = ("aa" / "a") "ab" {aaab, aab} {aaab}

A = ("a" / "b"?) "a" {aa, ba, a} {aa, ba}
```

Backtracking may examine input far ahead so result may depend on context in front.

$$A = "a" A "a" / "aa" EBNF: a^{2n} PEG: $a^{2^n}$$$

Sometimes PEG is EBNF

In this case PEG = EBNF:

```
Literal = Decimal / Binary

Decimal = [0-9]^+ "." [0-9]^*

Binary = [01]^+ "B"
```

Sometimes PEG is EBNF

In this case PEG = EBNF:

```
Literal = Decimal / Binary

Decimal = [0-9]^+ "." [0-9]^*

Binary = [01]^+ "B"
```

When does it happen?

Sérgio Queiroz de Medeiros Correspondência entre PEGs e Classes de Gramáticas Livres de Contexto.

Ph.D. Thesis

Pontifícia Universidade Católica do Rio deJaneiro (2010).

Sérgio Queiroz de Medeiros Correspondência entre PEGs e Classes de Gramáticas Livres de Contexto.

Ph.D. Thesis

Pontifícia Universidade Católica do Rio deJaneiro (2010).

If EBNF has LL(1) property then PEG = EBNF

But this is not LL(1):

```
Literal = Decimal / Binary

Decimal = [0-9]<sup>+</sup> "." [0-9]*

Binary = [01]<sup>+</sup> "B"
```

But this is not LL(1):

```
Literal = Decimal / Binary

Decimal = [0-9]<sup>+</sup> "." [0-9]*

Binary = [01]<sup>+</sup> "B"
```

Which means PEG = EBNF for a wider class.

But this is not LL(1):

```
Literal = Decimal / Binary

Decimal = [0-9]^+ "." [0-9]^*

Binary = [01]^+ "B"
```

Which means PEG = EBNF for a wider class. Let us find more about it.

Simple grammar

Alphabet Σ (the "terminals").

Set *N* of names (the "nonterminals").

For each $A \in N$ one rule of the form:

• $A = e_1 e_2$ (Sequence) or

 $\bullet \ A = e_1 \mid e_2 \quad (Choice)$

where $e_1, e_2 \in N \cup \Sigma \cup \{\varepsilon\}$.

Start symbol $S \in A$.

"Syntax expressions": $\mathbb{E} = N \cup \Sigma \cup \{\varepsilon\}$.

Simple grammar

Alphabet Σ (the "terminals").

Set *N* of names (the "nonterminals").

For each $A \in N$ one rule of the form:

- $A = e_1 e_2$ (Sequence) or
- $A = e_1 | e_2$ (Choice)

where $e_1, e_2 \in N \cup \Sigma \cup \{\varepsilon\}$.

Start symbol $S \in A$.

"Syntax expressions": $\mathbb{E} = N \cup \Sigma \cup \{\varepsilon\}$.

Will consider two interpretations: EBNF and PEG.

EBNF interpretation

 $\mathcal{L}(e)$ – language of expression $e \in \mathbb{E}$.

- $\mathcal{L}(\varepsilon) = \{\varepsilon\}$
- $\mathcal{L}(a) = \{a\}$ for $a \in \Sigma$
- $\mathcal{L}(A) = \mathcal{L}(e_1)\mathcal{L}(e_2)$ for $A = e_1 e_2$
- $\bullet \ \mathcal{L}(A) = \mathcal{L}(e_1) \cup \mathcal{L}(e_2) \ \text{for} \ A = e_1 \mid e_2$

Language defined by the grammar: $\mathcal{L}(S)$.

"Natural semantics" (after Medeiros)

Relation $\stackrel{\mathsf{BNF}}{\leadsto} \subseteq \mathbb{E} \times \Sigma^* \times \Sigma^*$, written [e] $x \stackrel{\mathsf{BNF}}{\leadsto} y$.

[e]
$$xy \overset{\mathtt{BNF}}{\leadsto} y$$
 means " xy has prefix $x \in \mathcal{L}(e)$ ".

Or: parsing procedure for e, applied to xy consumes x".

$$w \in \mathcal{L}(S) \Leftrightarrow [S] \ w \stackrel{\mathsf{BNF}}{\leadsto} \stackrel{\mathsf{S}}{\leadsto}$$

where \$ is "end of text" marker.

"Natural semantics" (after Medeiros)

[e] $x \stackrel{\text{BNF}}{\hookrightarrow} y$ holds if and only if it can be proved using these inference rules:

Example of proof

PEG interpretation

Elements of \mathbb{E} are parsing procedures that consume input or return "failure".

- ullet returns success without consuming input.
- a consumes a if input starts with a.
 Otherwise returns failure.
- A = e₁ e₂ calls e₁ then e₂.
 If any of them failed, backtracks and returns failure.
- A = e₁ | e₂ calls e₁.
 If e₁ succeeded, returns success.
 If e₁ failed, calls e₂ and returns its result.

"Natural semantics" (after Medeiros)

Relation
$$\stackrel{\mathsf{PEG}}{\leadsto} \subseteq \mathbb{E} \times \Sigma^* \times (\Sigma^* \cup \mathsf{fail})$$
, written [e] $x \stackrel{\mathsf{PEG}}{\leadsto} y$.

- [e] xy ^{PEG} y means "e consumes prefix x of xy".
- [e] $x \stackrel{\text{PEG}}{\leadsto}$ fail means "e applied to x returns failure".

w accepted by the grammar iff [S] w\$ $\stackrel{PEG}{\leadsto}$ \$.

"Natural semantics" (after Medeiros)

[e] $x \stackrel{\text{PEG}}{\leadsto} Y$ holds if and only if it can be proved using these inference rules:

$$\frac{b \neq a}{[\varepsilon] \ x \stackrel{\text{PEG}}{\rightleftharpoons} x} \quad \frac{b \neq a}{[a] \ ax \stackrel{\text{PEG}}{\rightleftharpoons} x} \quad \frac{b \neq a}{[b] \ ax \stackrel{\text{PEG}}{\rightleftharpoons} fail} \quad \frac{[a] \ \varepsilon \stackrel{\text{PEG}}{\rightleftharpoons} fail}{[a] \ \varepsilon \stackrel{\text{PEG}}{\rightleftharpoons} fail}$$

$$\frac{A = e_1 e_2 \quad [e_1] \ xyz \stackrel{\text{PEG}}{\rightleftharpoons} yz \quad [e_2] \ yz \stackrel{\text{PEG}}{\rightleftharpoons} Z}{[A] \ xyz \stackrel{\text{PEG}}{\rightleftharpoons} Z}$$

$$\frac{A = e_1 e_2 \quad [e_1] \ x \stackrel{\text{PEG}}{\rightleftharpoons} fail}{[A] \ x \stackrel{\text{PEG}}{\rightleftharpoons} fail} \quad \frac{A = e_1 | e_2 \quad [e_1] \ xy \stackrel{\text{PEG}}{\rightleftharpoons} y}{[A] \ xy \stackrel{\text{PEG}}{\rightleftharpoons} Y}$$

$$\frac{A = e_1 | e_2 \quad [e_1] \ x \stackrel{\text{PEG}}{\rightleftharpoons} fail}{[A] \ xy \stackrel{\text{PEG}}{\rightleftharpoons} Y}$$

where Y is y or fail and Z is z or fail.

By induction on the height of proof trees for [S] w\$ $\stackrel{\text{PEG}}{\leadsto}$ \$ and [S] w\$ $\stackrel{\text{BNF}}{\leadsto}$ \$:

• [S] w\$ $\stackrel{\mathsf{PEG}}{\leadsto}$ \$ \Rightarrow [S] w\$ $\stackrel{\mathsf{BNF}}{\leadsto}$ \$. (Medeiros)

By induction on the height of proof trees for [S] w\$ $\stackrel{\text{PEG}}{\leadsto}$ \$ and [S] w\$ $\stackrel{\text{BNF}}{\leadsto}$ \$:

- [S] w\$ $\stackrel{\mathsf{PEG}}{\leadsto}$ \$ \Rightarrow [S] w\$ $\stackrel{\mathsf{BNF}}{\leadsto}$ \$. (Medeiros)
- [S] $w\$ \stackrel{\text{BNF}}{\leadsto} \$ \Rightarrow [S]$ $w\$ \stackrel{\text{PEG}}{\leadsto} \$$ if for every Choice $A = e_1|e_2$ holds $\mathcal{L}(e_1) \cap \operatorname{Pref}(\mathcal{L}(e_2)\operatorname{Tail}(A)) = \varnothing$.

By induction on the height of proof trees for [S] w\$ $\stackrel{\text{PEG}}{\leadsto}$ \$ and [S] w\$ $\stackrel{\text{BNF}}{\leadsto}$ \$:

- [S] $w\$ \stackrel{PEG}{\leadsto} \$ \Rightarrow [S]$ $w\$ \stackrel{BNF}{\leadsto} \$$. (Medeiros)
- [S] $w\$ \stackrel{\text{BNF}}{\leadsto} \$ \Rightarrow [S] w\$ \stackrel{\text{PEG}}{\leadsto} \$$ if for every Choice $A = e_1 | e_2$ holds $\mathcal{L}(e_1) \cap \operatorname{Pref}(\mathcal{L}(e_2) \operatorname{Tail}(A)) = \varnothing$.

(Tail(A) is any possible continuation after A: $y \in \text{Tail}(A)$ iff proof tree of [S] w\$ $\stackrel{\text{BNF}}{\longrightarrow}$ \$ for some w contains partial result [A] xy\$ $\stackrel{\text{BNF}}{\longrightarrow}$ y\$.)

Let us say that Choice $A = e_1|e_2$ is "safe" to mean $\mathcal{L}(e_1) \cap \operatorname{Pref}(\mathcal{L}(e_2)\operatorname{Tail}(A)) = \varnothing$.

Let us say that Choice $A=e_1|e_2$ is "safe" to mean $\mathcal{L}(e_1)\cap \operatorname{Pref}(\mathcal{L}(e_2)\operatorname{Tail}(A))=\varnothing$.

The two interpretations are equivalent if every Choice in the grammar is safe.

$$\mathcal{L}(e_1) \cap \mathsf{Pref}(\mathcal{L}(e_2)\,\mathsf{Tail}(A)) = \varnothing$$

$$\mathcal{L}(e_1) \cap \mathsf{Pref}(\mathcal{L}(e_2) \, \mathsf{Tail}(A)) = \varnothing$$

Requires $\varepsilon \notin \mathcal{L}(e_1)$.

$$\mathcal{L}(e_1) \cap \mathsf{Pref}(\mathcal{L}(e_2)\,\mathsf{Tail}(A)) = \varnothing$$

Requires $\varepsilon \notin \mathcal{L}(e_1)$.

Depends on context.

$$\mathcal{L}(e_1) \cap \mathsf{Pref}(\mathcal{L}(e_2)\,\mathsf{Tail}(A)) = \varnothing$$

Requires $\varepsilon \notin \mathcal{L}(e_1)$.

Depends on context.

Difficult to check: $\mathcal{L}(e_1)$, $\mathcal{L}(e_2)$, and Tail(A) can be any context-free languages.

Intersection of context-free languages is in general undecidable.

$$\mathcal{L}(e_1) \cap \mathsf{Pref}(\mathcal{L}(e_2)\,\mathsf{Tail}(A)) = \varnothing$$

Requires $\varepsilon \notin \mathcal{L}(e_1)$.

Depends on context.

Difficult to check: $\mathcal{L}(e_1)$, $\mathcal{L}(e_2)$, and Tail(A) can be any context-free languages.

Intersection of context-free languages is in general undecidable.

Can be "approximated" by stronger conditions.

Approximation by first letters

```
Consider A = e_1 | e_2.
```

```
FIRST(e_1), FIRST(e_2):
sets of possible first letters
of words in \mathcal{L}(e_1) respectively \mathcal{L}(e_2).
```

Approximation by first letters

```
Consider A=e_1|e_2. 
FIRST(e_1), FIRST(e_2): sets of possible first letters of words in \mathcal{L}(e_1) respectively \mathcal{L}(e_2). 
If \mathcal{L}(e_1), \mathcal{L}(e_2), do not contain \varepsilon, FIRST(e_1) \cap \mathsf{FIRST}(e_2) = \varnothing implies \mathcal{L}(e_1) \cap \mathsf{Pref}(\mathcal{L}(e_2) \mathsf{Tail}(A)) = \varnothing.
```

Approximation by first letters

Consider $A = e_1 | e_2$.

FIRST(e_1), FIRST(e_2): sets of possible first letters of words in $\mathcal{L}(e_1)$ respectively $\mathcal{L}(e_2)$.

If $\mathcal{L}(e_1)$, $\mathcal{L}(e_2)$, do not contain ε , FIRST $(e_1) \cap \text{FIRST}(e_2) = \emptyset$ implies $\mathcal{L}(e_1) \cap \text{Pref}(\mathcal{L}(e_2) \text{Tail}(A)) = \emptyset$.

This is LL(1) for grammar without ε . Each choice in such grammar is safe. The two interpretations are equivalent.

To go beyond LL(1), we shall look at first *expressions* rather than first *letters*.

$$S = X \mid Y$$

$$X = Z \mid V$$

$$Y = W X$$

$$Z = a \mid b$$

$$V = b \mid T$$

$$W = d \mid U$$

$$T = c V$$

$$U = c W$$

$$S = X \mid Y$$

$$X = Z \mid V$$

$$Y = W X$$

$$Z = a \mid b$$

$$V = b \mid T$$

$$W = d \mid U$$

$$T = c V$$

$$U = c W$$

$$FIRST(X) = \{a, b, c\}$$

$$S = X \mid Y$$

$$X = Z \mid V$$

$$Y = W X$$

$$Z = a \mid b$$

$$V = b \mid T$$

$$W = d \mid U$$

$$T = c V$$

$$U = c W$$

$$FIRST(X) = \{a, b, c\}$$
$$FIRST(Y) = \{c, d\}$$

$$S = X \mid Y$$

$$X = Z \mid V$$

$$Y = W X$$

$$Z = a \mid b$$

$$V = b \mid T$$

$$W = d \mid U$$

$$T = c V$$

$$U = c W$$

FIRST(
$$X$$
) = { a , b , c }
FIRST(Y) = { c , d }
{ a , b , c } \cap { c , d } $\neq \varnothing$: $S = X | Y$ is not LL(1).

Truncated computation of FIRST

$$S = X | Y$$

 $X = Z | V$
 $Y = W X$
 $Z = a | b$
 $V = b | T$
 $W = d | U$
 $T = c V$
 $U = c W$

Truncated computation of FIRST

$$S = X \mid Y$$

$$X = Z \mid V$$

$$Y = W X$$

$$Z = a \mid b$$

$$V = b \mid T$$

$$W = d \mid U$$

$$T = c V$$

$$U = c W$$

Each word in $\mathcal{L}(X)$ has a prefix in $\{a,b\} \cup \mathcal{L}(T) = a \cup c^*b$.

Truncated computation of FIRST

$$S = X \mid Y$$

$$X = Z \mid V$$

$$Y = W X$$

$$Z = a \mid b$$

$$V = b \mid T$$

$$W = d \mid U$$

$$T = c V$$

U = c W

Each word in $\mathcal{L}(X)$ has a prefix in $\{a,b\} \cup \mathcal{L}(T) = a \cup c^*b$. Each word in $\mathcal{L}(Y)$ has a prefix in $\{d\} \cup \mathcal{L}(U) = d^*b$.

Each word in $\mathcal{L}(X)$ has a prefix in $a \cup c^*b$. Each word in $\mathcal{L}(Y)$ has a prefix in d^*b .

$$\mathcal{L}(X) = (a \cup c^*b)(\ldots)$$

$$\mathcal{L}(Y) = (c^*d)(\ldots)$$

Each word in $\mathcal{L}(X)$ has a prefix in $a \cup c^*b$. Each word in $\mathcal{L}(Y)$ has a prefix in d^*b .

$$\mathcal{L}(X) = (a \cup c^*b)(\ldots)$$

$$\mathcal{L}(Y) = (c^*d)(\ldots)$$

$$\mathcal{L}(X) \cap \operatorname{Pref}(\mathcal{L}(Y)\operatorname{Tail}(S))$$

$$= (a \cup c^*b)(\ldots) \cap \operatorname{Pref}((c^*d)(\ldots)(\ldots))$$

Each word in $\mathcal{L}(X)$ has a prefix in $a \cup c^*b$. Each word in $\mathcal{L}(Y)$ has a prefix in d^*b .

$$\mathcal{L}(X) = (a \cup c^*b)(\ldots)$$

$$\mathcal{L}(Y) = (c^*d)(\ldots)$$

$$\mathcal{L}(X) \cap \operatorname{Pref}(\mathcal{L}(Y)\operatorname{Tail}(S))$$

$$= (a \cup c^*b)(\ldots) \cap \operatorname{Pref}((c^*d)(\ldots)(\ldots))$$

No word in $a \cup c^*b$ is a prefix of word in c^*d and vice-versa.

Each word in $\mathcal{L}(X)$ has a prefix in $a \cup c^*b$. Each word in $\mathcal{L}(Y)$ has a prefix in d^*b .

$$\mathcal{L}(X) = (a \cup c^*b)(\ldots)$$

$$\mathcal{L}(Y) = (c^*d)(\ldots)$$

$$\mathcal{L}(X) \cap \operatorname{Pref}(\mathcal{L}(Y)\operatorname{Tail}(S))$$

$$= (a \cup c^*b)(\ldots) \cap \operatorname{Pref}((c^*d)(\ldots)(\ldots))$$

No word in $a \cup c^*b$ is a prefix of word in c^*d and vice-versa.

The intersection is empty: S = X | Y is safe.

Some terminology

X starts with a, b, or T:

"X has a, b, and T as possible first expressions".

$$\{a,b,T\} \sqsubseteq X$$

Some terminology

X starts with a, b, or T:

"X has a, b, and T as possible first expressions".

$$\{a, b, T\} \sqsubseteq X$$

No word in a, b, or T is a prefix of a word in d or U and vice-versa:

" $\{a, b, T\}$ and $\{d, U\}$ are exclusive".

$$\{a,b,T\} \asymp \{d,U\}$$

One can easily see that...

If $\varepsilon \notin e_1$ and $\varepsilon \notin e_2$ and there exist FIRST₁ $\sqsubseteq e_1$, FIRST₂ $\sqsubseteq e_2$ such that FIRST₁ \asymp FIRST₂ then $A = e_1 | e_2$ is safe.

The two interpretations of an ε -free grammar are equivalent if for every Choice $A=e_1|e_2$, e_1 and e_2 have exclusive sets of first expressions.

• (Good news) Grammar with ε is easy to handle. This involves first expressions of Tail(A), that are obtained using the classical computation of FOLLOW.

- (Good news) Grammar with ε is easy to handle. This involves first expressions of Tail(A), that are obtained using the classical computation of FOLLOW.
- (Good news) The results for simple grammar are easily extended to full EBNF / PEG.

- (Good news) Grammar with ε is easy to handle. This
 involves first expressions of Tail(A), that are obtained using
 the classical computation of FOLLOW.
- (Good news) The results for simple grammar are easily extended to full EBNF / PEG.
- (Good news) The possible sets of first expressions are easily obtained in a mechanical way.

- (Good news) Grammar with ε is easy to handle. This
 involves first expressions of Tail(A), that are obtained using
 the classical computation of FOLLOW.
- (Good news) The results for simple grammar are easily extended to full EBNF / PEG.
- (Good news) The possible sets of first expressions are easily obtained in a mechanical way.
- (Bad news) Checking that they are exclusive is not easy: it is undecidable in general case (but we may hope first expressions are simple enough to be decidable.)

$$S = (aa|a)b$$
 (that is: $S = Xb$, $X = aa|a$.)

$$\begin{split} S &= (aa|a)b \quad \text{(that is: } S = Xb, \ X = aa|a.) \\ \mathcal{L}(e_1) \cap \text{Pref}(\mathcal{L}(e_2) \, \text{Tail}(X)) &= aa \cap \text{Pref}(ab) = \varnothing. \end{split}$$

$$S = (aa|a)b$$
 (that is: $S = Xb$, $X = aa|a$.)
 $\mathcal{L}(e_1) \cap \operatorname{Pref}(\mathcal{L}(e_2)\operatorname{Tail}(X)) = aa \cap \operatorname{Pref}(ab) = \varnothing$.
 $X = (aa|a)b$ (that is: $S = Xb$, $X = aa|a$.)

$$S = (aa|a)b$$
 (that is: $S = Xb$, $X = aa|a$.)

$$\mathcal{L}(e_1) \cap \text{Pref}(\mathcal{L}(e_2) \, \text{Tail}(X)) = \text{aa} \cap \text{Pref}(\text{ab}) = \varnothing.$$

X is safe. Both interpretations accept {aab,ab}.

Sets of first expressions in X: {aa} and {a}. Not exclusive!

$$S = (aa|a)b$$
 (that is: $S = Xb$, $X = aa|a$.)

$$\mathcal{L}(e_1) \cap \operatorname{Pref}(\mathcal{L}(e_2)\operatorname{Tail}(X)) = \operatorname{aa} \cap \operatorname{Pref}(\operatorname{ab}) = \varnothing.$$

X is safe. Both interpretations accept {aab,ab}.

Sets of first expressions in X: {aa} and {a}. Not exclusive!

There is more to squeeze out of $\mathcal{L}(e_1) \cap \text{Pref}(\mathcal{L}(e_2) \, \text{Tail}(A))$.

That's all

Thanks for your attention!