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Abstract. Languages with infinite words have often been studied as subsets of a topological
space. The topology used for this purpose was always the natural topology of sequences. This
paper suggests that another topology may be more useful. It is obtained by taking Lim(W) as
the derived set of W. The resulting topological space is shown to be completely regular, strongly
zero-dimensional, and not normal. The languages appearing in the theory of w-automata are
shown to be closely related to functionally closed sets (continuous inverse images of the set {0}).
As a consequence, a number of known results can be expressed and proved in terms of continuous
mappings.

1. Introduction

Infinite words can be regarded as limits of finite words, and topology as an
abstract study of limits. For this reason, languages with infinite words (w-languages,
co-languages) have been often studied as subsets of a topological space. Initially
[6, 7, 11, 14, 17, 18, 23, 27, 28, 29, 30, 34, 36], this space was the set A” of infinite
words over an alphabet A. Except in one case,' the set A was always taken with
the ‘cartesian product’ topology arising when A® is treated as the product of infinitely
many copies of the discrete space A. This topology can also be introduced by
defining the distance d(x, y) between words x, y as a decreasing function of the
length of their common prefix. It has open sets of the form VA“, where V. A*?
and is sometimes called the ‘natural topology’ of A” [7,28].

To study infinite words as limits of finite words, it is convenient to include both
in the same space. This was done for the first time by Boasson and Nivat [4]. By

! In the earliest paper [14], infinite words were treated as expansions of real numbers.
2 One may note that Choueka [8] considered a topology on the space A*, where VA* were the closed
sets.
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treating the set A= A“ U A* as one topological space, they clearly exposed the
topological character of notions such as adherence and center of a language.’ The
space A™ has been afterwards used in a number of papers [1, 2, 3, 5, 16, 21, 31].
In all cases, the topology of A™ was obtained by an obvious extension of the distance
d(x, y) to arbitrary words x, y€ A™. The topology thus induced has open sets of
the form U u VA™, where U, V < A*. In the following it will be called the natural
topology of the space A™.

A closer examination shows that the notion of limit induced by the natural
topology is different from that used in the theory of w-automata. There are several
concepts of limit associated with a topology. The most important one, according to
[15], is that of a limit point (more often called an accumulation point or cluster
point). In the natural topology, a word x is a limit point of a set W if it has infinitely
many prefixes in common with members of W; thus, for example, a® is a limit
point of the set {a’b|i=0}. In the theory of w-automata, limits are introduced as
upper bounds of infinite chains ordered by the relation of being a prefix (e.g., [11,
p-359]). The word a® is clearly not a limit of {a'b|i= 0} in this sense.

The present paper is motivated by the idea that a topology specifically chosen to
reflect this second notion of limit may be more useful than the traditional one. One
way to construct such a topology is to require that, for each set W, the limit points
of W are identical to the upper bounds of all infinite chains contained in W. This
requirement defines a unique topology, in the following denoted by T.

Another way to imitate the intended notion of limit would be to start with the
limit of a convergent sequence. An infinite chain could be regarded as an infinite
sequence converging to its upper bound. We might require that all ascending
sequences converge to their upper bounds and that no other sequences are conver-
gent. Such a requirement, however, cannot be satisfied by any topology: any
convergent sequenceé will remain convergent after its terms have been re-ordered.
One could at best take the largest topology in which all ascending sequences
converge (as the largest topology corresponds to the smallest class of convergent
sequences). We show, in Section 7, that the topology defined in this way is the
same as T.

The purpose of this paper is to examine the properties of T. It turns out that the
space A” with the topology T is completely regular, but not normal. We also show
it to be strongly zero-dimensional and locally compact. The interesting fact seems
to be that the sets usually studied in connection to w-automata are closely related
to functionally closed sets of T (continuous inverse images of the set {0}, zero-sets).
As a consequence, a number of known results can be expressed and proved in terms
of continuous mappings. Even if this does not uncover new facts, it certainly provides
a new insight.

* Adherence and centre were introduced earlier by Nivat [19,20] in a nontopological manner. A
similar definition of centre, called Anf, was independently given by Prodinger and Urbanek [22], and
extended to w-languages by Freund [13].
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2. Definitions and notation

The set of all natural numbers (nonnegative integers) is denoted by N. For
keNu{w}, the set of first k natural numbers is denoted by [k]. Thus, in particular,
[0]1=0 and [w]=N. '

We consider an alphabet A, nonempty and at most countable. A function x:[k]~>
A, where ke NuU {w}, is called a word of length k. The length of a word x is denoted
by 1g(x). A word x is called finite if 1g(x) €N and infinite if 1g(x) = w. The set of
all words is denoted by A™, the set of all finite words by A*, and the set of all
infinite words by A“. (Traditionally, the elements of A™ have been also called
co-words, and the elements of A® w-words.) In the topological context, A™ is often
referred to as a space and its elements as points. As remarked by Landweber [18],
it is often useful to visualize A™ as an infinite tree, the words corresponding to finite
and infinite paths from the root.

For x,ye A®, we write x<y, and say that x is a prefix of y, to mean that
lg(x)<1g(y) and x(i) = y(i) for all ie[lg(x)]. It is easy to see that < is a partial
order in A®. As usual, we write x <y to mean that x<y and x # y. For x€ A~ and
neN, we define

P,(x)={ye A®|y<xandlg(y)=n}.

A set W< A% is called a chain if, for each pair x, ye W, either x<y or y<x. It
is easy to see that each infinite chain has a unique upper bound and each chain has
the least upper bound. The least upper bound of a chain W is denoted by Sup(W).

A subset W< A” is also called a language. (Traditionally, subsets of A® have
been called oo-languages, and subsets of A“ w-languages.) We apply the usual
notation (concatenation, *, “) to write down specific languages. As it is common,
we often write x instead of {x} for single-element sets. The complement of W with
respect to A® is denoted by CW. For W< A”, we define

Fin(W)= Wn A%, Inf(W)=Wn A”.

Intervals on the line of real numbers are written in the usual way, with a square
or round bracket indicating whether or not the end point is included in the interval;
for example, [0, a) ={r|0<r< a}. The interval [0, 1] with the natural topology of
real numbers is denoted by L '

For a word we A” and a set W< A™, we define the functions p,,: A*> I and
nw:A®-> I as follows:

0 forx=w,
pw(x)=427183"1 forx<w,
1 for x ¢ Py(w);
0 if Py(x) n W is infinite,
w(x) = {2‘” if Py(x)~ W has neN elements.

The following facts can be easily verified.
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Property 2.1. For each we A*,0<a<1, and 0<b<1,
(1) p3N([0, @)) = P,_y(w),
(2) p'([0, b)) = Pp_s(w),
where m, neN are the smallest numbers such that 27" <a and 2" <b.

Property 2.2. For each W< A*, 0<a<1, and 0<b<1,
(1) nw([0, @))=Fin(nw(27"))A%,
(2) nw([0, b])=Fin(nw(2™™))A%,
where m, neN are the smallest-numbers such that 27" <a and 2°" <b.

The topological aspect of this paper is based on [10, 12].

3. Operators Lim and Clm

For W< A, we define
Lim(W)={Sup(U)| U < W is an infinite chain},
Clm(W) = A” —Lim(CW).

These symbols can be read as the limit and the colimit of W, respectively. The set
Lim( W) has been known in the literature under a number of different names: lim W,
Lim(W) in [9, 21, 32, 33], closure of W, W in [11, 20], G,-set with G,-base W in
[18], &-limit, W? in [28], &5(W) in [30, 35, 36], and W* in [31]. It has been
traditionally defined for W< A* only; since Lim(W) is fully defined by Fin(W),
our extension to W< A” is just a notational convenience. A separate symbol for
the set Clm( W) will be useful for expressing the dualities between open sets and
closed sets.
The following facts can be easily verified.

Property 3.1. Forall V, Wc A™,
(1) Lim(W)={xe A“|(Py(x) N W) is infinite},
(2) Clm(W)={xe A®|(Py(x)— W) is finite},
(3) Lim (W) =Lim (Fin (W)),
(4) Clm (W)= Clm(Fin(W)),
(5) Lim(9)=Clm(9) = Clm(p) =9,
(6) Lim(A*)=Clm(A*)= A",
(7) Clm(W)< Lim(W)c A%,
(8) Lim(Vu W) =Lim(V)u Lim(W),
(9) Clm(V ~ W)=CIm(V)Clm(W),
(10) Lim(W)=nw(0).
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Under the assumption that A is at most countable, the set A* is countable. As
soon as A contains more than one letter, the set A” is not countable, and, because
of Property 3.1(3), there exist subsets of A that cannot be represented as Lim( W)
for any W. We define

Lim = {Lim( W)| W < A*},
Clm = {Clm(W)| W < A*} ={A® — Lim(W)| W < A*}.

For A={a, b}, an example of a set not belonging to Lim is W= A*a“ [18, Lemma
3.1]; on the other hand, A® — W = (a*b)“ = Lim(A*b) € Lim. By definition, we have
thus We Clm and A® — W ¢ Clm. It is easy to see that aA” € Limn Clm. Thus, all
three classes: Lim— Clm, Clm —Lim, and Lim ~ Clm are in general not empty.

4. The topology T: open sets and closed sets

We note the following properties of Lim (where V, W< A* and xe€ A™):

(1) Lim(@) =9,

(2) Lim(Lim(W))< Wu Lim(W),

(3) Lim(Vu W)=Lim(V)u Lim(W),

(4) x ¢ Lim(x).
These properties guarantee that there exists a unique topology in which the set of
limit points of W (the derived set of W) is equal to Lim( W) [10, p. 73]. We denote
this topology by T, and call it the Lim-topology of A™. The topology T is implied
throughout the rest of the discussion, unless otherwise stated. As usual, we identify
T with the family of its open sets.

We start by characterizing the closed sets and open sets of T.

Property 4.1. The following conditions are equivalent for each W < A™:
(1) Wis a closed set,
(2) Lim(W)c Inf(W),
(3) for each x € Inf(CW), there exists n €N such that P,(x)< CW.

Proof. A set is closed if and only if it contains its derived set; since Lim( W) < A“
for each W, this is equivalent to (2). By Property 3.1(1), (2) is equivalent to saying
that each infinite word outside W has only finitely many prefixes in W, which is
expressed by (3). O

Property 4.2. The following conditions are equivalent for each W < A™:
(1) Wis an open set,
(2) Inf(W)< Cim(W),
(3) For each x € Inf(W), there exists neN such that P,(x)< W.
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Proof. A set is open if and only if it is a complement of a closed set. Using the
definition of Clm, one can verify that (2) is equivalent to Lim(CW) < Inf(CW)
which, according to Property 4.1(2), states that CW is closed. By referring to Property
4.1(3), one may verify that (3) states the same thing. [

A set is called open-and-closed if it is both open and closed.
Property 4.3. W is open-and-closed iff Inf(W) = Lim( W) = Clm(W).

Proof. The proof is straightforward from Properties 4.1(2), 4.2(2), and Clm(W) c
Lim(W). O

It follows that, in particular, each W < A®, each W 2 A“, and each finite W< A®
are closed, while each W < A* and each W 2 A* are open. Each P,(x), for xe A”
and neN, and each set of the form VA™, with- V< A*, are open-and-closed. We
note that each set of the form U u VA™, with U, V < A*, is open; the topology T
is thus larger than the natural topology.

For W< A%, its closure, denoted CI( W), is the union of W and its derived set.
The interior of W is the set In(W) = CCI(CW), and the boundary (or frontier) of
W is the set Fr( W) =Cl( W) —In(W). The following facts are easy to verify using
Property 3.1.

Property 4.4. For each W < A™,
(1) CI(W)=Fin(W)u (Inf(W) U Lim( W)),
(2) In(W)=Fin(W)u (Inf( W) n Clm(W)),
(3) Fr(W)=(Inf( W) — Lim(W)) u (Lim( W) — Clm( W)) u (Clm( W) — Inf( W)),
(4) Cl(In( W)) =Fin( W)U Lim( W),
(5) In(CI(W)) = Fin( W) L Clm(W).

A set W< A% is a closed domain if W =Cl(In(W)), and an open domain if
W =In(CI(W)) [12, p.37]. From Property 4.4(4) and (5) we have the following
property.

Property 4.5. For each W< A%,
(1) Wis a closed domain if and only if Inf(W)=Lim(W),
(2) W is an open domain if and only if Inf(W)=Clm(W).

5. Basis

For x € A™, a basis at the point x is a family of open sets containing x, such that
each open set G 2 x contains a member of the family.
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Property 5.1. For each x € A%, the family B, ={P,(x)|neN, n<Ig(x)} is a basis at x.

Proof. As remarked before, each set of the form P,(x) is open. If x € A*, the set
Pyg()(x) ={x} € B, is contained in each G < x. If x € A“, B, has the required property
by Property 4.2(3). O

From Property 2.1, the following property is obtained.

Property 5.2. For each x € A®, the family {p;'([0, a))|0<a =<1} is identical to B,,
and thus constitutes a basis at x.

A basis for T is a family of open sets such that each set Ge T is a union of
members of the family. Such a basis can, in particular, be obtained as the union of
bases at all points. We thus have the following property.

Property 5.3. The family B=\_J{B,|x e A™} is a basis for T.

A subbasis for T is a family of open sets such that each set G € T can be represented
in terms of arbitrary unions and finite intersections of members of the family.

Property 5.4. The family B'=\_J {B,|xc A®} is a subbasis for T (unless A consists
of a single letter).

Proof. It is enough to show that each set of the form {x}, where x € A*, is a finite
intersection of members of B'. Indeed, each such set is an intersection of P,(xa®)
and P,(xb“), where a,be A and n=1g(x). O

We note that the space A” is first-countable, that is, has a countable basis at each
point. We also note that T has a basis consisting of open-and-closed sets.

6. Continuous mappings

Let Z be any topological space. A function f: A~ Z is continuous if f'(Y) is
open for each open set Y < Z. The following alternative definitions of continuity
are well known [10, p. 79].

Property 6.1. Each of the following conditions is equivalent to a function f: A* > Z
being continuous:

(1) £7U(Y) is open for each member Y of a subbasis for Z,

(2) £I(Y) is closed for each closed Y < Z,

(3) fis continuous at each point x € A™, that is, for each member Y of the basis at
f(x), there exists a member B of the basis at x such that f(B)< Y.
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In the following, continuous functions from A to I will be of a special interest.
We have, in particular, the following property.

Property 6.2. All functions p,,: A”~ 1 for we A* and all functions nw A%~ I for
W < A* are continuous.

Proof. According to Property 6.1(1), it is enough to show that the inverse images
of the intervals [0, a) and (b, 1] are open for 0<a=<1 and 0<b <1 (since these
intervals constitute a subbasis for I). According to Properties 2.1(1) and 2.2(1), the
inverse images of [0, a) are open for all the stated values at a. According to Properties
2.1(2) and 2.2(2), the complements of inverse images of (b, 1] are closed for 0<b <1.
For b =0, we have p;'((b, 1]) = C{w} and nw((b, 1]) = C Lim(W), which are both
open. [

Since {x} is open for each x € A*, f: A*~ Z is always continuous at each point
x € A*. From Properties 5.1 and 6.1(3), we obtain the following property.

Propperty 6.3. A function f: A”~ I is continuous if and only if for each x € A and
£ >0 there exists neN such that | f(x)—f(y)| < e whenever y € P,(x).

It is well known [10, p. 84] that if f: A*~> I and g: A~ I are continuous, so are
their absolute values, sum, difference, product, and quotient (this latter under the
condition that the denominator is never 0).

Another interesting class of continuous functions are functions from A% to A”.
From Properties 5.1 and 6.1(3), we obtain the following property.

Property 6.4. A function f: A®~> A% is continuous if and only if, for each x € A* and
natural number m <1g(f(x)), there exists an n €N such that f(y) € P,(f(x)) whenever
y € P,(x).

Using Property 5.2, one can imitate the classical e-6-form.

Property 6.5. A function f: A®—> A% is continuous if and only if for each x € A” and
£>0, there exists 8> 0 such that p;,(f(y)) < & whenever p,(y) <.

A special case of functions from A to A™ are the monotone functions. A function
f:A®-> A% is monotone if, for every x, y€ A*, x=<y implies f(x)<f(y).

Property 6.6. The following conditions are equivalent for a monotone function f:A®>
A%

(1) fis continuous,

(2) f\(2) is closed for each z € A¥,

(3) Sup(f(W))=f(Sup(W)) for each infinite chain W.
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Proof. (1)=(2): This implication follows from Property 6.1(2).

(2)=>(3): Let W< A™ be an infinite chain. If f is monotone, f( W) is also a chain
and f(Sup(W)) is its upper bound. From this follows Sup(f(W)) < f(Sup(W)). If
Sup(f(W)) is infinite, the only possibility is Sup(f( W)) = f(Sup( W)). If Sup(f(W))
is finite, f( W) must be a finite set; if (2) holds, f~'(f(W)) = W is closed as a finite
union of closed sets. Being closed, it must contain Sup( W); thus, f(Sup(W)) € f(W),
which gives f(Sup(W)) = Sup(f(W)).

(3)=(1): Suppose f is not continuous. Then, by Property 6.4, there exists x€ A”
such that f(y) ¢ P,,(f(x)) for infinitely many words y < x. All these words y clearly
form an infinite chain W with Sup(W) = x. If f is monotone, f(W) is also a chain
and is contained in P,(f(x)). By definition, f( W) is disjoint with P,,(f(x)), and
thus must be a finite set. This implies Sup(f(W)) € f( W); Since f(Sup(W)) = f(x) €
P, (f(x)), Sup(f(W)) # f(Sup(W)). O

We note that Property 6.6(3) is formally identical to the definition of continuity
used by Scott [25,26]. However, as A® is not a lattice, Sup is defined only for
chains, and Property 6.6(3) makes sense only for the functions f that transform
chains into chains. What we have shown is that, in the domain of such functions,
our definition of continuity indeed coincides with that of Scott. A similar property
of the natural topology was observed in [4].

7. Sequences and convergence

Let Z be any topological space. A function ¢ :N->Z is called a sequence of
elements of Z. The sequence ¢ converges to x € Z, written ¢ — x, if, for every open
set G 2 x, there exists an neN such that ¢(i) € G for all i = n. The point x is then
called the limit of ¢.

Property 7.1. A sequence ¢:N-> A converges to x € A™ if and only if, for each
>0, there exists an neN such that p,(¢(i))<e forall i=n.

Proof. It is easy to see that one obtains an equivalent definition of convergence if
the set G 2 x is replaced by a member of the basis at x. The property then follows
from Property 5.2. [J

Other characterizations of convergence have been given in [24]; they seem to be
of little interest here. As a digression, we note that the set N'=Nu {w} could be
regarded as the set of all words over a one-letter alphabet. With Lim-topology
assumed for N’, Property 7.1 becomes similar to Property 6.5, and states that
¢ :N-> A” converges if and only if ¢ has a continuous extension to N'; the limit of
¢ is then the value of the extension for w.

It follows from Property 7.1 that if a sequence ¢ of words converges to x, all
elements of ¢, from some point on, must be prefixes of x. The length of ¢(i) must
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approach that of x as i increases; however, the elements of ¢ need not be ordered
according to length.

Let a sequence ¢ of words be called ascending if ¢ (i) <¢@(i+1) for each ieN.
It is easy to see that, for each ascending sequence ¢, the set ¢(N) of all its terms
is a chain. From Property 7.1 the next property immediately follows.

Property 7.2. Each ascending sequence ¢ :N—-> A converges to Sup(¢(N)).
As mentioned in Section 1, we have the following property.

Property 7.3. T is the largest topology on A having Property 7.2.

Proof. Let T’ be any topology on A*. We show that T’ satisfying Property 7.2
implies T'c T.

Suppose T' & T, that is, there exists a set G that is open in T, but not in T. By
Property 5.3, G is not the union of members of B. That means, there exists xe G
such that x € B< G is not satisfied by any B € B. Clearly, x € A“, for, otherwise, we
would have x € {x} = G. Let ¢ be the ascending sequence of all prefixes of x. Consider
any neN, The set P,(x), being a member of B and containing x, must contain an
element not belonging to G. That means, there exists i = n such that ¢(i) € G. This
shows that, in T’, ¢ does not converge to x, and T’ does not satisfy Property 7.2. O

Because A” is first-countable, all of its elementary concepts can be characterized
in terms of convergent sequences. We thus have the following properties [ 10, p. 218].

Property 7.4. A set W e A” is closed if and only if it contains the limit of each convergent
sequence ¢ :N-> W.

Property 7.5. Let Z be any topological space. A function f: A® > Z is continuous at
z€ A® if and only if for each sequence ¢ of words, ¢ — x implies f o ¢ — f(x).

A useful variation of the above is formulated in the following property.

Property 7.6. A function f:A*-> Z is continuous at z€ A” if and only if for the
ascending sequence ¢ of all prefixes of x, f o ¢ converges to f(x).

Proof. (1) The condition is necessary by Properties 7.2 and 7.5.

(2) To show that it is sufficient, consider any open set Y, f(x)e YS Z If fe ¢
converges to f(x), there exists n €N such that fo ¢(i)€ Y for all i=n. However,
that means f(P,(x))< Y, and f is continuous at x by Property 6.1(3). O
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8. Functionally open and functionally closed sets

A set W< A™ is functionally closed (or a zero-set) if there exists a continuous
function f: A® - I such that W = f7(0) [12, p. 64]. The complement of a functionally
closed set is functionally open (or a cozero set). Each functionally closed set is closed,
and each functionally open set is open. Each open-and-closed set is both functionally
open and functionally closed. The finite unions and countable intersections of
functionally closed sets are functionally closed; the finite intersections and countable
unions of functionally open sets are functionally open.

Property 8.1. A set W< A” is a member of Lim if and only if it is functionally closed.

Proof. (1) The condition is necessary by Properties 3.1(10) and 6.2.

(2) The condition is sufficient: Consider any W < A® such that W= f"'(0) for a
continuous f: A* - I. Denote V,, =min(f '((27""",27"])), where min(U) is defined
as the set of all such xe U that yg U for all y <x. We show that W =Lim(V),
where V=J{V,|neN}.

(a) WcLim(V). Suppose xe W, and choose any keN. By Property 6.3, there
exists an m such that y € P,.(x)=|f(y) —f(x)| <27 & f(y)<27* Choose any ye
P,(x)—{x}. Since W< A®, y is not in W, and thus, f(y) # 0; there must exist an
integer n> k such that 27"7'<f(y)<27". Hence, x has at least one prefix in
(277, 27"]); the shortest such prefix is in V,. This shows that, for any keN;
x has a prefix in V, for some n> k, and thus in V, for infinitely many values of n.
Since all sets V,, are disjoint, this means x € Lim( V).

(b) W2Lim(V). Suppose x € W, thatis, f(x) # 0. Let e =3f(x). Choose any keN
such that 27*<e By Property 6.3, there exists an m such that ye P, (x)=
|f(x)—f(y)| < e f(y)=e>2"% Thus, at most m prefixes of x can be in(J{V,|n=
k}. As each V, can contain at most one prefix of x, only finitely many of them can
be in (J{V,|n<k}. Hence, x has only finitely many prefixes in V, and
x¢zLim(V). O

Property 8.2. A set W< A” is functionally closed if and only if it is a closed set with
Inf( W) € Lim,

Proof. (1) The condition is necessary: Let W be functionally closed; as stated
before, each such set is closed. Since A =Lim(A*), A“ is functionally closed by
Property 8.1. The set Inf( W) is thus functionally closed as an intersection of two
functionally closed sets. From Property 8.1 follows Inf( W) € Lim.

(2) The condition is sufficient: Suppose W is closed and Inf( W)= Lim(V) for
some V< A*. Define

0 for x € Fin(W),

fx)= {nv(x) for x ¢ Fin( W).
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It is easy to see that f~'(0) = W. It remains to show that f is continuous; for this
purpose, we use Property 6.3. Consider any x € A“ and ¢ > 0. By continuity of 7y,
there exists #n €N such that y € P,(x)=>|nv(x) —nv(p)|<e.

Case 1: x e Lim(W). Since W is closed, we have Lim( W) < Lim( V), which means
xeLim(V) and ny(x)=f(x)=0. Clearly, f(y)=<nv(y) for each ye A™; thus, ye€
P, (x)=>|0-f(I<|0-nv(y)|<e.

Case 2: x & Lim(W). Then, at most finitely many prefixes of x are in Fin( W),
and there exists k€N such that f(y) =7y for all y € P,(x). Taking m = max(k, n),
we have y € P,.(x)=>|f(x) = f(y)| =|nv(x) = nv(y)|<e. O

From part (2) of the above proof the next property immediately follows.

Property 8.3. Each functionally closed set W can be represented as W = f~ 1(0) for a
continuous function f: A%~ I with values in the set {0}U{27"|neN}.

By taking the dual forms of the above results, we obtain the following properties.

Property 8.4. A set W< A” is a member of Clm if and only if WU A* is functionally
open.

Property 8.5. A set W< A% is functionally open if and only if it is an open set with
Inf( W) € Clm.

Property 8.6. Each functionally open set W can be represented as W = f~ (0, 1]) for
a continuous function f: A*~ I with values in the set {0} L {27"|neN}.

The characterization of classes Lim and Clm in terms of functionally closed and
functionally open sets (Properties 8.1 and 8.4) is considered by the author to be the
most interesting result of this paper. The w-languages accepted by finite-state
automata according to different schemes are intersections and unions of members
of Lim and Clm. The characterization of these classes in terms of Gs-sets and F,-sets
of the natural topology seems to account for most of the topological results concern-
ing w-automata [18, 29, 30, 31, 36]. Functionally open and functionally closed sets
have useful properties that will enable us, in Section 10, to prove a number of
known results in terms of these sets, and thus, indirectly, in terms of continuous
functions.

In fact, the functionally closed sets of T are very similar to G;-sets of the natural
topology. A set W is a Gj,-set of the natural topology if and only if Inf( W) € Lim;
a functionally closed set of T has to satisfy the additional condition that Lim(W) <
Inf(W). A corresponding relationship exists between the functionally open sets of
T and F,-sets of the natural topology.

For the sake of completeness, we note two other characterizations of the class
Lim in terms of T: as the class of all derived sets, and as the class of infinite-word
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parts of closed domains. The first one is trivial: the topology T itself was so defined;
the other is very closely related to this definition. Both classes lack the useful
properties of functionally closed sets.

9. Separation and disconnectedness

Two sets W,, W, < A® have disjoint neighbourhoods if there exists disjoint open
sets G;=2 W, and G,2 W,.

Property 9.1. The following conditions are equivalent for a pair of sets W,, W< A™:
(1) W, and W, have disjoint neighborhoods;
(2) There exist disjoint functionally open sets U2 W, and U,2 W,;
(3) There exists a set U < A* such that W, U u Clm(U)< Uu Lim(U) = CW,.

Proof. (1)=>(2): Suppose G; =2 W, and G, =2 W, are open and disjoint. Using G, <
CG, and Property 3.1, we obtain Clm(G,) c Lim(G,) < A —Clm(G,). From this
and Property 4.2(2) follows:

G, < Fin(G,) u Cim(G,) c Fin(G,) u Lim(G,)
< C(Fin(G,) u Clm(G,)) € CG,.

By Properties 4.2(2) and 8.5, the sets U, = Fin(G,) u Clm(G,) and U, = Fin(G;) v
CIm(G,) are functionally open; they clearly satisfy (2).

(2)=>(3): Since all functionally open sets are open, the above applies also when
G,, G, are already functionally open. The set U =Fin(G,) clearly satisfies (3).

(3)=>(1): Let U be as stated by (3). Using Properties 3.1 and 4.2(2), one can
easily verify that the sets G, = U u Clm(U) and G,= C(U u Lim(U)) are open and
disjoint; by (3), they contain, respectively, W, and W,. O

Two sets W,, W,< A™ are completely separated if there exists a continuous
function f: A® - I such that f(x) =0 for all xe W, and f(x) =1 for all xe W,. The
function f is said to completely separate W, and W, [12, p. 64].

Property 9.2. The following conditions are equivalent for a pair of sets W;, W, A™:
(1) W, and W, are completely separated ,
(2) There exist disjoint functionally closed sets F, 2 W, and F,2 W,;
(3) There exists an open-and-closed set U such that W, < U < CW,;
(4) There exists a set U < A* such that W, < U uClm(U) = U uLim(U) < CW,.

Proof. (1)=>(2): Let W, and W, be completely separated by the function f. Define
g(x)=1—f(x); the function g: A*- I is clearly continuous. It is easy to see that
the sets F,=f'(0) and F,= g '(0) satisfy (2).
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(2)=>(3): Let F, 2 W, and F, 2 W, be as stated by (2). By Property 8.3, F; =f'(0)
and F,=g '(0) for some continuous, rational-valued functions f:A*->I and
g:A”> I Define

h(x) = f(x)/ (f(x)+g(x)).

Since F, and F, are disjoint, f(x)+g(x)#0 for all xe A, and h:A*>1 is
everywhere defined and continuous. Since both f and g are rational-valued, so is
h. Let a € I be an irrational number, for example, a =27"/2, Define

U=h""a), U=h""[0,a)), Uy=h"'((a1])

Clearly, Uyu U,u U, = A%. Since h is rational-valued, we have U, =@, and the sets
U,, U, form a partition of A”. Being inverse images of open sets, they are both
open; being complements of each other, they are both closed. It is easy to see that
W,<c F,=h"}0)< U, and W, < F,=h"'(1) € U,. Denoting U = U,, we have W, <
Uc CW,.

(3)=(1): Let U be as stated by (3). Let f(x) =1 for xe U and f(x) =0 for x g U.
For an open-and-closed set U, the function f: A* - I so defined is continuous. It
completely separates W, and W,.

(3)<(4): This follows from Property 4.3. [

It follows from Properties 9.1(3) and 9.2(4) that two completely separated sets
always have disjoint neighbourhoods. The converse is not necessarily true; an
example are the sets W, = A*au A*a® and W,=A*bu A*b” (where A={aq, b}).

It follows further from Properties 9.2(2) and (3) that, for each set W € Lim n Clm,
there exists an open-and-closed set U such that Inf(U) = W. Together with Property
4.3, this gives the following topological characterization of the class Lim n Clm.

Property 9.3. A set W< A® is a member of Limn Clm if and only if W =Inf(U) for
an open-and-closed set U.

After these preliminary results, we proceed to classify the space A* according to
its separation and disconnectedness properties.

A topological space is a T,-space if for every pair of distinct points there exists
an open set containing one of them but not the other. This property is equivalent
to all single-point sets being closed. Since this is the case for A*, we have the
following property.

Property 94. A” is a T,-space.

A T,-space is completely regular (or Tychonoff) if, for each closed set Fc A,
and point x € F, {x} and F are completely separated. According to Propertty 9.2(3),
this is in particular true if the space has a basis consisting of open-and-closed sets.
We thus have the following property.
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Property 9.5. A® is a completely regular ( Tychonoff). space.

Being completely regular, A™ is also a separated (or Hausdorff) space (that is,
all distinct points x, y € A have disjoint neighbourhoods).

A T,-space is normal if each pair of disjoint closed sets have disjoint neighbour-
hoods.

Property 9.6. A is not a normal space.

Proof. Consider any set W, < A”; let W,=A“ - W,. W, and W, are clearly closed
and disjoint. Suppose they have disjoint neighbourhoods. Then, by Property 9.1(3),
there exists U such that Inf( W;) < Clm(U) < Lim(U) < A® — Inf(W,). By Inf(W,) =
W, = A” —Inf(W,), this means W, =Clm(U) = Lim(U). Hence, W, and W, do not
have disjoint neighbourhoods unless they are both members of Limn Clm. (O

A Tychonoft space is strongly zero-dimensional if for each pair of completely
separated sets W, and W, there exists an open-and-closed set U such that W, c U ¢
CW,[12, p. 444]. Thus, according to Property 9.2(3), we have the following property.

Property 9.7. A® is strongly zero-dimensional.

10. Some infinite unions and intersections
We start with countable unions and intersections.

Property 10.1. The following conditions are equivalent for each W = A™:

(1) Wis functionally closed,;

(2) W is a countable intersection of functionally closed sets;

(3) W is a countable intersection of open-and-closed sets;

(4) W is a countable intersection of closed sets of the form U u VA®, where
U, Vc A%,

(5) W is an intersection of a sequence of sets Fy2 Go2 F,2 G,2 + - -, where F,
is closed and G, is open for each neN.

Proof. The proof follows the pattern (1)=>(4)=(3)=(2)=(1) and (1)=(5)=(3).

(1)=(4): Let W be functionally closed. By Properties 8.2 and 3.1(10), W is
closed and equal to Fin( W) U 7'(0), where V < A* is such that Lim( V) = Inf(W).
For neN, define

F,=Fin(W)u nv'([0,27"]).

Since W is closed, we have Lim(W) ¢ Lim( V) < 3'([0,27"]) and F, is also closed.
According to Property 2.2, for each n>0 we have F,=Fin(W)u V,A%, where
V. < A* 1t is easy to see that W=("\{F,|n>0}.

(4)=(3)=(2): Closed sets of the form U U VA™ are open-and-closed; open-and-
closed sets are functionally closed.
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(2)=(1): Countable intersections of functionally closed sets are functionally
closed.
(1)=>(5): Let W=£""(0) for a continuous f: A~ I For neN, define

F,=f'0,27"),  G,=f(0,27").

It is easy to see that these sets satisfy (5).

(5)=>(3): Let W be an intersection of sets F,, G, as stated. By Property 9.1(2),
for each n eN there exist a functionally closed set F; and a functionally open set
G!, such that F,2 F, 2 G, 2 G,. It is easy to see that W is an intersection of the
sequence Fi2 Go=2 F12 G2 -

By Property 9.2(2) and (3), for each neN there exists an open-and-closed set H,
such that G, 2 H, 2 F.,,,. It is easy to see that W=\ {H,|neN}. O

A property dual to the above is the following.

Property 10.2. The following conditions are equivalent for each W < A™:
(1) W s functionally open;,
(2) Wis a countable union of functionally open sets,
(3) W is a countable union of open-and-closed sets,
(4) Wis a countable union of open sets of the form C(U u VA™), where U, V < A%,
(5) W is a union of a sequence of sets Go< Foc G,< Fy< - -+, where G, is open
and F, is closed for each neN.,

Let G5 denote the class of all countable intersections of functionally open sets
and F, the class of all countable unions of functionally closed sets. Using Properties
10.1(3) and 10.2(3), one can verify, in a rather standard way, the following property.

Property 10.3. The class Gs N F, is a Boolean algebra containing all functionally open
and all functionally closed sets.

By intersecting the sets appearing in Properties 10.1 and 10.2 with A“, and applying
Properties 8.1, 8.4, and 9.3, we obtain the following properties.

Property 10.4. The following conditions are equivalent for each W< A”:
(1) WelLim;
(2) W is a countable intersection of members of Lim,
(3) W s a countable intersection of members of Lim n Clm;
(4) W is a countable intersection of sets of the form VA®, where V = A*,

Property 10.5. The following conditions are equivalent for each W < A®:
(1) WeClm;
(2) Wis a countable union of members of Clm,
(3) W is a countable union of members of Lim Clm,
(4) W is a countable union of sets of the form C(VA®), where V< A*,
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All these are classical results, obtained in a new way in terms of T. This new way,
however, is not entirely independent of the traditional one. The key to the traditional
results is [18, Lemma 2.2], that links Lim to Gj;-sets of the natural topology. The
main lines of its proof, disguised in the terminology of continuous functions, can
still be recognized in the proofs of Property 8.1 (part (2)) and of Property 10.1
((1)=(4)). Another classical result [18, Theorem 3.3] can be obtained by restricting
Property 10.3 to the subspace A”.

Properties 10.1(5) and 10.2(5) do not seem to have a known counterpart.

We now proceed to arbitrary unions and intersections.

Property 10.6. The following conditions are equivalent for each W< A™:
(1) Wis closed, ,
(2) W is an intersection of functionally closed sets;
(3) W s an intersection of open-and-closed sets;
(4) W is an intersection of closed sets of the form U U VA® where U, V < A*.

Proof. (1)=>(3): T has a basis consisting of open-and-closed sets.
(3)=>(2): Each open-and-closed set is functionally closed.
(2)=>(4): This follows from Property 10.1(4).

(4)=(1): Intersection of closed sets is closed. [

A property dual to the above is the following.

Property 10.7. The following conditions are equivalent for each W < A™:
(1) Wis open;
(2) W is a union of functionally open sets;
(3) Wis a union of open-and-closed sets;
(4) W is a union of open sets of the form C(U u VA™), where U, V < A*.

Finally, we have the following property.

Property 10.8. The following holds for each set W < A™:
(1) Wis a Gs-set, that is, a countable intersection of open sets;
(2) Wis a F,-set, that is, a countable union of closed sets;
(3) W is a union of functionally closed sets;
(4) W is an intersection of functionally open sets.

Proof. (1) Let be W< A®. For each neN, define G, =\ {P,(x)|xe W}. It can be
easily verified that W =("){G, |neN}. Each G, is clearly an open set; hence, each
W< A is a Gs-set. Each open set is a Gs-set, and thus, in particular, each W< A*,
As finite unions of Gj-sets are Gs-sets, so is each W = Fin(W)u Inf(W)<c A™,
(2) This follows from F,-sets being complements of Gj-sets.
(3) For each xe€ A®, the set {x} is closed, and Inf({x}) € Lim; thus, {x} is func-
tionally closed by Property 8.2. Each set W is clearly a union of single-point sets.
(4) is dual to (3). O
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We note that, according to Property 10.8(1), (2), the Borel sets of T are totally
uninteresting.

11. Retracts

A continuous function r: A*-> A” having the property that ror=r is called a
retraction; the image r(A™) is then called a retract (of A”). Retracts have a number
of useful properties, for example, that every continuous function defined on a retract
is extendable to A™ [10, p. 323].

Property 11.1. A nonempty set R = A is a retract if and only if it is closed and the
set Inf(R) —Lim(R) is a countable member of Lim A Clm.

Proof. (1) The condition is necessary: Let R be a retract and r the corresponding
retraction. Each retract of a Hausdorff space is closed [10, p. 322]; thus, R is closed
and Lim(R) < Inf(R).

Denote W = Inf(R)—~Lim(R) and consider any we W. Since w £ Lim(R), there
exists an n such that P,(w) n R ={w}. It is easy to see that r '(V)=r"(V A R) for
each V< A%, Thus, r'(w) =r"'(P,(w)~ R) =r"'(P,(w)), and r *(w) is open-and-
closed (being equal to the inverse image of an open-and-closed set). The sets r~'(w)
for we W are all mutually disjoint and nonempty; each of them, being open, contains
finite words. Since A* is countable, there can be at most countably many such sets;
in other words, W must be countable. Being countable, W can be represented as
W ={ws, wy, w,, ...} (the proof for finite W is analogous). For ieN, denote U, =
r~'(w;). Using Properties 9.5 and 9.7, and the fact that U, is open, one can partition
U; into two open sets, X; and Y;, such that Inf(X;)=w,.

The unions X =|J {X;|ieN} and Y =|J{Y;|ieN} are also open and constitute
a partition of r (W)= {U;|ieN}. The set r"'(W) is open as a union of open
sets and closed as an inverse image of a closed set. From this follows that both X
and Y are open-and-closed. It is easy to see that W = Inf(X); W € Lim n Clm follows
from Property 4.3.

(2) The condition is sufficient: Let R be as stated. Denote W =Inf(R)—Lim(R).
Let W={wy, w,;, w,,...}. From WeLimn Clm, it follows that the sets W and
(A” — W)U Fin(R) are both functionally closed. By Property 9.2(2) and (3), there
exists an open-and-closed set U such that W< U < C((A” — W)U Fin(R)). Define

Go=Po(wo) n U,
G,=P0(W,)0(U—U{G"|n<i}) fOI‘i>0.

One can verify by induction that G; is open-and-closed and G; ~ R = w; for each
ieN. It is easy to see that all sets G; are disjoint.

Let z be any fixed element of R. Define the function r: A*—> A™ as follows:

(a) if x€ R, then r(x)=x;

(b) if x¢ R and x € G; for some ieN, then r(x)=w;;
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(c) if x¢ R and x¢£ G; for any ieN and x has a prefix in R, then r(x) is the
longest such prefix;

(d) otherwise, r(x)=z.

It is easy to see that r maps A™ onto R and is an identity within R. It remains to
show that r is continuous. For this purpose, we use Property 6.4. Consider any
x€ A“ and choose any m <Ig(r(x)). The following cases are possible:

Case 1: xe W, that is, x = w; for some i. Since G; is open, there exists an n such
that P,(x) < G;. Consider any y € P,(x). By (a) and (b), we have: r(y) = w; € P,,(w;) =
P, (r(x)). In all the remaining cases, we have x ¢ W, and thus x € CU. Since CU is
open, there exists a k such that Pi(x)< CU, and thus P.(x)~ G;=@ for all ieN.
In the following, k is assumed to have this property.

Case 2: xe€Lim(R). As x has infinitely many prefixes in R, R must contain u <x
such that 1g(u) > max(m, k). Let n =1g(u). Consider any y € P,(x). If y € R, we have
r(y)=ye P, (x)=P,(r(x))by(a)andn>m. If y£ R, yhasaprefixvin R u<v<x
By (a), n>k, and (c), we have r(y) =ve P,(x) = P,(r(x)).

Case 3: x¢£ R and x has a prefix in R. Since x £ Lim(R), x has the longest prefix
u belonging to R. Let n =max(lg(u), k). Consider any y € P,(x). By n>k and (c),
we have r(y)=ue P,(u)=P,(r(x)).

Case 4: x £ R and x has no prefix in R. Choose any n eN and y e P,(x). By (d).
we have r(y)=z€ P,(z)=P,(r(x)). O

The above result provides one more characterization of the class Lim, as the class
of infinite-word parts of retracts.

12. Pseudometrics

Since each metric space is normal, the topology T cannot be induced by any
metric. However, since A™ is completely regular, T can be induced by a family of
pseudometrics [10, p. 198] (other terms for pseudometric are gauge or écart). One
such family can be constructed as follows.

Choose a word we A®. For this word w and any x, ye A%, define

d(x, y) =]pw(x) = pu(¥)l.
It is easy to see that d,, has all the properties of a pseudometric, namely,
d,(x,x) =0,
d,(x, y) = dw(y, x),
for all x, y, ze A®. A d,-ball with centre x € A~ and radius r>0 is defined as
B(x;d,,r)={ye A%|d,(x,y)<r}.
Define D ={d, |w e A*}. The family D of pseudometrics induces the topology T in
the following sense.
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Property 12.1. The family B(D)={B(x;d,,r)|xe A®, d, e D,r>0} constitutes a
basis for T.

Proof. Itisenough to show that (1) all members of B(D) are open, and (2) B< B(D).

(1) For fixed w, xe A®, define f(y)=d,(x, y). Being an absolute value of the
difference between the constant p,(x) and the continuous function p,(y), the
function f: A*- I is continuous. The ball B(x;d,, r) can be defined in terms of f
as ([0, r)); it is open being an inverse image of an open set under a continuous
mapping.

(2) According to Property 5.2, each element of B can be expressed as p},'([0, r))
for 0< r=1. Since p,,(w) =0, p;,'([0, 7)) is a d,,-ball with centre w and radius r. O

Another family of pseudometrics is obtained by defining

dw(x, y)= |77w(x) - nw(y)l,

for a fixed set W< A*. The family {dw | W < A*} also induces T; the proof is similar
to that for D, except that construction of B as the set of open dy-balls is less
straightforward. (The set W used to express P,(x) for xe A® is zA*— P,,,(x),
where z is the shortest word in P,(x).)

13. Compactness

A Hausdorft space is compact if each covering of the space by open sets has a
finite subcovering. It is locally compact if, for each point x, there exists an open set
G 2 x such that each open covering of CI(G) has a finite subcovering.

Since each compact space is normal, A~ is not compact. However, we have the
following property.

Property 13.1. A™ is locally compact.

Proof. For x € A*, we have G =CI(G) ={x}: {x} has exactly one, finite, covering.
For x € A®, we have G =CI(G) = Py(x): by Property 4.2(3), the member of the

covering that contains x must contain P,(x) for some n; this leaves out at most n

elements, that can be covered by at most n members of the covering. [
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